大学院理工学研究科学生便覧

(工学系)

平成29年度入学者用

博士前期課程 博士後期課程 博士課程5年一貫コース

山形大学大学院理工学研究科

目 次

		产大字 开究科																									
I	博	士前	期課	程																							
-	<u> </u>	愛修 方	:)土.																								7
		を を 士学																									
		ッエナ 勿質化					-																			2	
		ヵ点に ドイオ																								2	
		加力																								3	
		5711 <u>十</u> 青報科																								3	
		氢氢電																								4	
		豊械シ																								5	
		っのづ																								6	_
		, 事 攻																								7	
		, , ,	.,	. 12 14 141																							
п	博	士後	期課	程																							
]	1. 屌	夏修方	法:																							7	7
		之位論																									
9	3. 华	物質化	二学工	学専]攻	カリ	キュ	.ラ.	ム・																1	0	3
4	1. /	バイオ	工学	:専习	女力]	リキ	ュラ	ム																	1	0	9
5	5. 賃	 ② ③ ③) ③)) ()) ()) ())))))))))	報工	学具]攻	カリ	キュ	.ラ.	ム・																1	1	5
6	5. 核	幾械シ	⁄ステ	-ムコ	二学耳	専攻	カリ	丰.	ュラ	ラム															1	2	3
7	7. {	っのつ	らく り	技術	う経 力	営学	専攻	(1	MC	ΤС	専ュ	文)	力	リキ	ニュ	ラム	, ··	• •							1	3	1
				_					•				_														
Ш		士課レッ																	i 機	材	料シ	ノス	゙゙゙	· الم	創	戓	
7	_	フロン	′ティ	アを	す機材	オ料	シス	テ.	ム倉	भा	フ	レッ	ァク	スナ	-学	空σ)特·	色】	- 對	育 目	目標				1	3	7
		。 夏修方																								3	
		カリキ																								4	
IV	学	生生	活案	内·																					1	5	1
			·																								
V	諸	規	則	等·	• • •		• • •		• • •		• • •							• •	• • •		• • •		• •	• • •	1	6	1

山形大学大学院理工学研究科(工学系)ポリシー

ディプロマ・ポリシー

山形大学大学院理工学研究科(工学系)博士前期課程は,「21世紀の社会情勢と産業構造の変革に呼応して『自ら新分野を開拓する能力を育てる大学院』を目標に、学部よりさらに広い視野に立ち、精深な学識を養い、専攻領域における研究・技術的能力と高度な専門性に支えられた人材を育成すること」を教育理念としている。後期課程においては、前述に加え「自立して世界に通用する高度に専門的な研究・教育に従事する研究開発能力をもつ人材を育成すること」を目標としている。

山形大学大学院理工学研究科(工学系)博士前期課程においては、上記の教育研究の理念や 目的に沿った教育課程を修了し、修士論文の審査および試験に合格し、以下のような能力や知 識を修得した者に学位を授与する。

- 1. 専門領域に関わる深い知識を修得し、基礎から先端的分野において、自在に応用できる能力を身につけている。
- 2. 専門領域に関連する技術分野に関して幅広い知識を持ち、それを応用できる能力を身につけている。
- 3. 科学技術の発展と多様化に対応できる論理的な思考力や記述力,発表と討議の能力,国際的な情報収集能力を身につけている。

山形大学大学院理工学研究科(工学系)博士後期課程においては、上記の能力に加え、博士 論文の審査および試験に合格し、以下のような能力を修得した者に学位を授与する。

- 1. 学術的、技術的問題を自ら捉えてその意味を深く理解し、調査分析と定式化により仮説を検証する能力を身につけている。
- 2. 問題解決に革新的な方法を適用し、自ら創造性を十分発揮できる能力を身につけている。

カリキュラム・ポリシー

山形大学大学院理工学研究科(工学系)は、学位授与の方針(ディプロマ・ポリシー)を踏まえ、以下の方針に従って教育研究環境を用意する。

山形大学大学院理工学研究科(工学系)博士前期課程においては、

- 1. 専攻領域の基礎から先端分野に及ぶ体系的な授業科目を配置する。
- 2. 専攻領域の外国語の論文を理解し、研究や調査を学会や論文等で発表することができる実験、演習を行う。また、協定校で受けた授業科目を単位として認定する。
- 3. 学位取得後に社会で学生の能力が発揮できるよう、カリキュラムを配置する。

山形大学大学院理工学研究科(工学系)博士後期課程においては、上記の教育課程の方針に加え、以下の教育研究環境を用意する。

- 1. 自ら学術的、技術的課題を設置し、新しい原理や手法を適応することにより、課題を解決して発見ができる実験・演習を配置する。
- 2. 産業の現場、各種研究施設又は他専門分野の研究室において、工学に対する視野を広め、 問題提起・解決能力を養う授業科目を配置する。

アドミッション・ポリシー

山形大学大学院理工学研究科(工学系)博士前期課程は、以下の人材を求めている。

- 1. 専門分野に関する基礎学力を有し、さらに深く学ぼうとする意欲のある人
- 2. 専門分野に関する知識を生かし、論理的な思考のもと、自然科学の探究や研究開発に積極的に取り組む人
- 3. 社会の中での協調性を保ちながら、自ら考えて決断、行動できる人
- 4. 他人へ思いやりの心と高い倫理観を持つ人
- 5. 専門分野に関する知識や技術を通して広く社会に貢献したい人

山形大学大学院理工学研究科(工学系)博士後期課程では、上記に加え、以下の人材を求めている。

- 1. 専門分野以外に対しても深い関心をもち、広い応用力を有する人
- 2. グローバルな視野に立ち、世界で活躍する研究者・技術者を目指す人

理工学研究科の目的

科学技術の急速な発展と高度化に伴って、各専門分野の細分化が進む一方で、従来の学問体系を超えた、新しい境界領域と学際領域が開拓され、科学技術の統合化が強力に推し進められている。本研究科では、種々の分野で先端科学技術を将来にわたり維持し発展させるために、広範な基礎学力に基づいた高度の専門知識と能力を兼ね備えた、柔軟で独創性豊かな科学者・技術者の養成を目的とする。

博士前期課程(修士)には、次の12専攻を置く。

数理科学専攻 物理学専攻 物質生命化学専攻 生物学専攻 地球環境学専攻 物質化学工学専攻 バイオ化学工学専攻 バイオ化学工学専攻 応用生命システム工学専攻 情報科学専攻 電気電子工学専攻 機械システム工学専攻 ものづくり技術経営学専攻

博士後期課程(博士)には、次の6専攻を置く

地球共生圏科学専攻 物質化学工学専攻 バイオ工学専攻 電子情報工学専攻 機械システム工学専攻 ものづくり技術経営学専攻

博士前期課程は、広い視野にたって精深な学識を修得し、専攻分野における研究能力と高度の専門性を要する職業等に必要な高度の能力を養うことを目的とする。

博士後期課程は、専門分野について、研究者として自立して研究活動を行い、また、その他の高度に専門的な業務に従事するに必要な高度の研究・開発能力及びその基礎となる豊かな学識を養うことを目的とする。

I 博士前期課程

1. 履修方法

1-1 指導教員

学生には、入学の際、授業科目の履修、学位論文の作成等に対する指導のために、博士前期 課程(修士)担当教員の中から指導教員が定められる。

学生は、指導教員から示された1年間の研究指導の計画に基づき、各年度の初めに「研究計画書」を提出すること。(様式:11,12頁掲載,工学部ホームページからダウンロード可能) ●ダウンロード方法

- 1. 山形大学のホームページから「**学部・研究科・基盤教育院**」の「**工学部・工学部ホームページ**」 をクリック
- 2. 右下部分にある「在学生の皆様へ」の一番上にある「学生サポートセンター」をクリック
- 3. 中部分にある「各種申請様式のご案内」の「研究計画書について(博士前期課程)」をクリック

1-2 授業科目

授業科目には、講義科目、特別演習A及び特別実験A(ものづくり技術経営学専攻(MOT専攻)は「研究論文特別演習」)がある。

(1) 講義科目

所属する専攻の科目の履修により、専門知識と技術を深める。また、幅広い工学基礎を築くために、他専攻、各専攻共通及び有機材料システム研究科の講義科目を履修することができる。

(2) 特別演習 A

専門分野についての基礎的文献を輪講演習することによって、外国語の能力を養うと同時に、多量の情報の中から必要なものを収集する能力を訓練する。

(3) 特別実験 A

専門分野の研究における基本的かつ高度な手段となる実験装置、計測機器、情報処理等についての知識と技術を系統的に修得し、研究課題についての実験を行うことで、研究を計画的に実行できる能力を養成する。

各専攻の授業科目及び単位数は、所定の表に示す。

講義科目については、所属の専攻を超えて履修することができる。

1-3 履修申告

- (1) 学生は、学期始めに履修科目について指導教員と相談の上、履修しようとする授業科目を決定し、履修登録の手続きを行うこと。
- (2)「特別演習 A」,「特別実験 A」は, 4 学期のみ履修登録を行うこと。
- (3) 他専攻及び各専攻共通の講義科目を履修する場合は、授業担当教員の許可を得、指導教員の承認を得た上で履修登録すること。
- (4) 履修登録をした授業科目以外の科目は履修できないことがあるので、十分注意すること。

1-4 成績の審査

- (1) 成績の審査は、試験、研究報告、平常の成績等によって行う。
- (2) 成績の評価は, S (秀), A (優), B (良), C (可), F (不可)の評語をもって表し, S, A, B, Cを合格, Fを不合格とし, 配点は次のとおりとする。
 - S (秀) 90~100点 A (優) 80~89点 B (良) 70~ 79点
 - C (可) 60~ 69点 F (不可) 59点以下

1-5 単位の基準

授業科目の単位数は、1単位の授業科目を45時間の学修を必要とする内容をもって構成することを標準とし、授業の方法に応じ、教育効果、授業時間外に必要な学習等を考慮して、次の基準により単位数を計算するものとする。

- (1) 講義・演習については、15時間の授業をもって1単位とする。
- (2) 実験・実習については、30時間の授業をもって1単位とする。

上記の基準によって科目を履修し、成績審査に合格した科目に対して単位を与える。

1-6 履修基準

- (1) 修了に必要な最低修得単位数は、30単位である。ただし、ものづくり技術経営学専攻のとうほくMITRAIコースは、40単位とする。
- (2) 選択講義科目には、自専攻講義科目、他専攻講義科目(有機材料システム研究科講義科目を含む)、各専攻共通科目のほか、他の大学院で履修した科目を充てることができる。

博士前期課程履修基準表

(物質化学工学・バイオ化学工学・応用生命システム工学・電気電子工学専攻)

授業科目区分	単 位 数	備考
自専攻講義科目	10単位	
選択講義科目	10単位以上	
特別演習A	4 単位	必 修
特別実験A	6 単位	必 修
計	30単位以上	

博士前期課程履修基準表(情報科学専攻)

	TWINT NOT	3 247
授業科目区分	単 位 数	備考
自専攻講義科目	10単位	
選択講義科目	8 単位以上	
文 献 調 査	2 単位	必 修
特別演習 A	4 単位	必 修
特別実験A	6 単位	必 修
計	30単位以上	

博士前期課程履修基準表(機械システム工学専攻)

授業科目区分	単 位 数	備考
自専攻講義科目	10単位	専門基盤科目6単位以上を含む。
選択講義科目	10単位以上	自専攻以外の講義科目4単位以上を含む。
特別演習A	4 単位	必 修
特別実験A	6 単位	必修
計	30単位以上	

博士前期課程履修基準表

(ものづくり技術経営学専攻:価値創成コース)

授業科目区分	単 位 数	備考
自専攻講義科目	1 4 単位	ただし「技術経営学概論A」 および「技術経営学概論B」は必修とする。
選択講義科目	10単位以上	
研究論文特別演習	6 単位	必 修
計	30単位以上	

博士前期課程履修基準表

(ものづくり技術経営学専攻:とうほくMITRAIコース)

授業科目区分	単 位 数	備考
自専攻講義科目	12単位	自コースの◎印の科目をすべて習得すること。 と。
選択講義科目	22単位以上	ビジネス日本語 I 又はIVを含む。
研究論文特別演習	6 単位	必 修
計	40単位以上	

1-7 他大学院履修科目

- (1) 山形大学大学院規則第14条(他の大学院における履修等)の定める協定に基づく他の大学院(外国の大学院を含む)において履修した授業科目について修得した単位は、他大学院履修科目として、本研究科における授業科目の履修により修得した単位として認定することができる。
- (2) 上記(1)で認定できる単位は、10単位までとする。

1-8 修士論文の審査及び最終試験

履修基準の授業科目を修得する見込みがつき,研究指導を受けた学生は,修士論文を作成し, 審査申請することができる。

提出された論文は、米沢地区委員会が選出する論文審査委員により審査される。

最終試験は、論文提出者が、各専攻開催の公聴会において、学位論文の内容を発表する際に、 関連する事項に対して論文審査委員が口頭又は筆答で試問を行う形で実施される。

1-9 修了要件

- (1) 博士前期課程の修了の要件は,大学院に2年以上在学し,履修基準表に示す単位を修得し,かつ,必要な研究指導を受けた上,修士論文の審査及び最終試験に合格することである。 なお,ものづくり技術経営学専攻では,特定の研究成果の審査をもって,修士論文の審査 に代えることがある。
- (2) 在学期間に関しては、特に優れた研究業績を上げた者は、1年以上在学すれば足りるものとする。

1-10 学位の授与

理工学研究科博士前期課程を修了した者には、修士(理学若しくは工学)の学位が授与される(後掲「山形大学学位規程」別表参照)。

1-11 社会人受入れのための教育方法の特例措置について

本研究科(工学系)では、社会人受入れに当たり、教育上特に必要と認められる場合には、大学院設置基準第14条に定める教育方法の特例措置を適用し、次の方法で履修できるものとする。

- (1) 通常の時間帯 (8時50分から15時55分) 以外に,特例措置の時間帯 (16時から21時10分)を設定する。
- (2) 必要に応じて夏季・冬季休業期間中も履修できるものとする。
- (3) 特例の時間帯による履修を希望する者は、当該年度当初に、指導教員の承認を得た上、適用授業科目名、時限、時期等を出願し、授業担当教員の許可を得るものとする。

1-12 博士課程教育リーディングプログラムにおける履修方法等について

山形大学大学院規則第13条の2の規定に基づく博士課程教育リーディングプログラムフロンティア有機材料システム創成フレックス大学院コースに在籍している学生については、次の方法で履修するものとする。

- (1) 履修方法は、Ⅲ博士課程教育リーディングプログラム「フロンティア有機材料システム創成フレックス大学院」コース(博士課程5年一貫コース)(139ページ)に定める方法に従うものとする。
- (2) 本コースに在籍している学生は、修士論文の審査及び最終試験を行わず、QE (Qualifying Examination:博士課程研究基礎力試験)の合格をもって博士後期課程への進学を許可されるものとする。
- (3) QE に合格した学生は、博士前期課程を修了せずに博士後期課程へ進学し、本コースの3年 次へ進級するものとする。

【理工学研究科博士前期課程(工学系)】

年度 研究計画書(一年目)

提出年月日: 年 月 日

専攻名	学生番号
氏 名	
研究題目	
研究期間	年 月 日(入学年月日)~ 年 月 日(修了予定年月日)
研究の 背 景	
目的	
研究実施計画	【一年目】 4月~ 6月 ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○
研究倫理教育 確認 欄	科学の健全な発展のために-誠実な科学者の心得-(日本学術振興会「科学の健全な発展のために」編集委員会)を通読しました。 年 月 日 (署名)

主指導教員

(署名又は記名・押印)

- *初年次に研究実施計画を作成し、主指導教員の承認を得て提出すること。
- *二年目以降は初年次の研究実績に基づき、次ページに修正・加筆の上、提出すること。
- *長期履修学生及び過年度生は、在学期間分の研究実施計画を記載すること。

【理工学研究科博士前期課程(工学系)】

年度 研究計画書(二年目)

提出年月日: 年 月 日

専 攻 名		学生番号	
氏 名			
研究題目			
研究期間	年 月 日()	入学年月日)~	年 月 日(修了予定年月日)
研究の 背 景			
目的			
研究実施計画	【一年目】 4月~ 6月 ○○○○ 7月~ 9月 ○○○○ 10月~12月 ○○○○ 1月~ 3月 ○○○○ 【二年目】 4月~ 6月 ○○○○ 7月~ 9月 ○○○○ 10月~12月 ○○○○ 1月~ 3月 ○○○○ *記入例以外の記載方法で	000000000 0000000000 0000000000 0000000	000000000000000000000000000000000000000
研究倫理教育 確認 欄	科学の健全な発展のために 展のために」編集委員会)を 年		- (日本学術振興会「科学の健全な発 (署名)

主指導教員

(署名又は記名・押印)

*二年目以降は初年次の研究実績に基づき、修正・加筆の上、提出すること。

*長期履修学生及び過年度生は、適宜修正の上で記載すること。

1-13 教育職員免許状

(1) 取得できる免許状

理工学研究科(工学系)博士前期課程は、教育職員免許法及び教育職員免許法施行規則に 定める免許状授与の所要の資格を得ることのできる課程として認定されている。したがって、 高等学校教諭一種免許状(理科・情報・工業)授与の認定を受ける課程において所定の単位 を修得している場合は、次の表のとおり免許状を取得することができる。

取得できる	色鉢状の	插緪及	71、粉彩
おお いっと) 尤.計1人 U	作出说从	いなれれ

専 攻	免許状の種類	免許教科
応用生命システム工学専攻 電 気 電 子 工 学 専 攻 機 械 シ ス テ ム 工 学 専 攻		工業
物質化学工学専攻	高等学校教諭専修免許状	理科,工業
バイオ化学工学専攻		理科
情報科学專攻		情報,工業

(2) 基礎資格及び最低修得単位数

所要資格		3	最低修得单位	工数
免許状の種類	基礎資格	教科に関す る科目	教職に関する科目	教科又は教職 に関する科目
高等学校教諭専修免許状	修士の学位を有すること	2 0	2 3	1 6 • 2 4

(注)本前期課程において高等学校教諭専修免許状又の取得資格を得るためには、「教科又は教職に関する科目」(●印)を24単位以上修得する必要がある。

なお、最低修得単位数欄の「教科に関する科目」、「教職に関する科目」、「教科又は教職に関する科目」(●印のないもの)は、各一種免許状のための最低修得単位数である。

(3) 教育職員免許状の授与申請手続

教育職員免許状は、都道府県の教育委員会が授与する。したがって、教育職員免許状の授 与を申請する者は、所定の申請書類を準備した上で、当該教育委員会に申請手続を行わなけ ればならない。

なお、本前期課程を修了時に申請手続を行う場合は、学務課教育支援担当で山形県教育委員会に対し、一括して行う。申請手続の詳細については、掲示(中央掲示板)にて周知するので、見落としないように十分留意すること。

(4) 単位の修得方法

本前期課程の修了要件を満たすとともに、次のとおり単位を修得することにより免許状の取得資格が得られる。

	専	Ĺ	Ţ	文		単 位 の 修 得 方 法
電	気 電	子	工	学	享 攻	免許教科「工業」について、当該専攻及び各専攻共通の「授業科目及び単位数」表の「教職科目」欄の『 エ 』の授業科目の中から24単位以上修得しなければならない。
物	質化	学	エ	学 専	I 攻	免許教科「理科」について、当該専攻の「授業科目及び単位数」表の「教職科目」欄の『理』の授業科目の中から24単位以上修得しなければならない。 免許教科「工業」について、当該専攻の「授業科目及び単位数」表の「教職科目」欄の『工』の授業科目の中から24単位以上修得しなければならない。
バ	イオ	化	学 工	学『	事 攻	免許教科「理科」について、当該専攻の「授業科目及び単位数」 表の「教職科目」欄の『 理 』の授業科目の中から24単位以上修 得しなければならない。
情	報	科	学	専	攻	免許教科「情報」について、当該専攻の「授業科目及び単位数」表の「教職科目」欄の『情』の授業科目の中から24単位以上修得しなければならない。 免許教科「工業」について、当該専攻及び各専攻共通の「授業科目及び単位数」表の「教職科目」欄の『工』の授業科目の中から24単位以上修得しなければならない。

2. 修士学位論文審査の手引

履修基準の授業科目を修得する見込みがつき、必要な研究指導を受けた学生は、修士学位論文 を作成し、所定の手続を経て審査申請することができる。提出された論文は、理工学研究科学位 審査細則に従って審査される。学位論文審査の流れは、2-4の図に示すとおりである。

学位論文等が指定された日時までに提出されない場合には受理されないので、時間的余裕をもって提出すること。

2-1 論文題目の提出

提出期限 (休日の場合には、その前日又は前々日とする。)

① 後期提出(3月修了)の場合: 12月10日

② 前期提出(9月修了)の場合: 6月10日

2-2 修士学位論文等の提出

修士学位論文等は、下記により提出すること。

(1) 提出期限(休日の場合には、その前日又は前々日とする。)

① 後期提出(3月修了)の場合: 2月10日(正午)

② 前期提出(9月修了)の場合: 8月10日

(2) 提出物

① 学位論文審査申請書(所定の様式) 1部

② 学位論文 3部

③ 論文内容の要旨(所定の様式) 3部

2-3 修士学位論文作成要領

1 学位論文

- (1) 学位論文は、和文又は英文とする。
- (2) 用紙は、A4判白色紙を使用し、縦位置で横書きとすること。
- (3) 学位論文の表紙には、論文題目、専攻名、氏名を記載すること。また、学位論文が英文の場合には、論文題目の下に()書きで和訳を付記すること。
- (4) 学位論文は、パソコン、ワープロ、又は手書きの場合は黒ボールペンを用いて楷書で清書し、英文は すべてタイプ又はワープロとすること。
- (5) 学位論文の形式は特に指定しないが、図、表、写真も含めて、前例を参照し内容が理解し易いような適切な形式とする。
- (6) 参考文献は,著書(全員),題名,学術雑誌名(書物名),出版社,巻,頁(始頁-終頁) 及び発表年(西暦)を明記すること。

2 学位論文内容の要旨

- (1) 用紙は、A4判白色紙を使用し、縦位置で横書きとすること。
- (2) 学位論文内容の要旨は所定の様式を使用し、論文題目、専攻名、氏名を記載すること。
- (3) 博士前期課程の学位論文内容は、和文で1,200字程度とすること。

中 攻 冥 6公聴会日程通知 ③論文審查受理通知 論文審查委員候補者選出依賴 ④論文審查委員候補者提出 公聴会日程案提出 6公聴会日程通知 提出; 専攻事務室 承認; 主指導教員 ⑦論文審查依賴 ①論文題目提出 公聴会日程公示 ⑤審査委員選出 (研究科委員会) 幸 ⑧論文審查·最終試験 修士論文審査委員 灩 研究科長 提出;学生状。一化が一 > ⑩学位授与 ②学位論文審査申請 の可否 ⑨論文審査・最終 承認; 主指導教員 # 試驗結果報告 修士学位論文審査の流れ ②学位記授与 $\exists \exists$ (1)報 <u> 1</u> 孙 冥 Ø

— 16 **—**

3 修士学位論文審査申請に係る提出様式

【論文題目提出書】

年 月 日

山形大学大学院理工学研究科長 殿

年度入学 博士前期課程

専攻名

学生番号

氏 名 ⑩

論文題目提出書

山形大学大学院理工学研究科学位審査細則第3条第2項の規定により、下記のとおり 提出します。

記

論 文 題 目

主指導教員承認氏名·印

年 月 日

山形大学大学院理工学研究科長 殿

年度入学 博士前期課程

専攻名

学生番号

氏 名 @

学位論文審查申請書

山形大学学位規程第8条第1項の規定により、修士(工学)の学位を受けたいので、 下記の書類を添えて申請します。

記

- 1. 学 位 論 文 3 部
- 2. 論文内容の要旨 3 部

主指導教員承認 氏名 • 印

論文内容要旨

		年度入学	博士前期課程
	専攻名	, 1	
	学生番	号	
	氏	名	
論文題目			

(1,200 字程度)

物質化学工学専攻 教育目標とカリキュラム

物質化学工学専攻の学習・教育目標

A. 地球環境と融和できる化学技術者・研究者の養成

人類の健康で安全な生活維持のため、省エネルギー・省資源・環境保全の立場から 新素材の開発とその生産ができる化学技術者・研究者を養成する。

B. 革新的かつ独創的な発想力の涵養

バイオ,環境,エネルギーおよび材料をキーワードとし,科学技術の最先端で革新 的な研究開発を行い独創的な発想にいたる人材を養成する。

C. グローバルな情報収集能力と発信能力の育成

幅広い素養と柔軟な発想に基づいた国際的な視点を有し、科学技術に関する的確な情報収集能力と研究開発成果の発信能力を備えた人材を育成する。

学位論文審査基準

- 1. 山形大学大学院理工学研究科(工学系)ディプロマ・ポリシーに従い,学位論文として適切な形式を踏まえていること。
- 2. 修士学位論文は、新規性または独創性があって物質化学工学専攻に関連する分野における新 しい知見をもたらすか、または当該分野における研究遂行に必要な基礎知識・理解力・問題 解決能力等を証明する、独自の考察を含んだ論文であること。
- 3. 博士前期課程在学中に行われる中間発表及び公聴会において、研究計画と研究経過およびそのプレゼンテーションが適切と認められること。ならびに発表後の質疑応答において研究に対する理解と取組が十分であると認められること。

4. 論文の構成について

- (1) 論文の題目が適切であること。
- (2) 研究の背景が記述され、研究目的が明確であること。
- (3) 研究方法が記述されており、目的に沿った方法であること。
- (4) 結果が図表等を用いて適切に示されていること。
- (5) 考察が結果に基づいて適切に導き出されていること。
- (6) 目的に対応して結論が適切に導き出されていること。
- (7) 引用文献が適切に用いられていること。
- 5. 提出された学位論文は審査委員(主査,副査)によって審査されること。
- 6. 審査基準1から5までのすべてを満たしたものを合格とする。

物質化学工学専攻 授業科目及び単位数表

彻县儿子工于寻找 技术科	\neg \sim	(U) 	一工女	X 1X				
	単位							
授業科目名			年度		年度	教職 科目	担当教員	備考
	数	前期	後期	前期	後期	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
有機機能化学特論	2	2		2		理	伊藤(和)・落合	英語可
エネルギー化学特論	2	2		2		理	仁科・立花	英語可
分析化学特論	2	2		2		理	遠藤(昌)・伊藤(智)	英語可
固体化学特論	2	2		2		理	鵜沼・松嶋	英語可
物理化学特論	2	2		2		理	神戸・吉田	英語可
構造有機化学特論*	2		2			理	増原・片桐	
有機合成化学特論	2		2		2	理	伊藤(和)・落合・増原・ 片桐・皆川	
反応変換工学特論	2	2		2		エ	會田・樋口	
移動現象論	2	2		2		エ	桑名	英語可
プロセス流体工学特論	2		2		2	工	門叶	
化学工学熱力学特論	2	2		2		工	宍戸	
粉体工学特論	2		2		2	エ	木俣・小竹	
分離工学特論	2		2		2	エ	松田 (圭)	
界面物理化学特論*	2			2		工	木俣・野々村	英語可
物質化学工学特別演習A(理科系)	4	1	1	1	1	理	専攻教員	
物質化学工学特別演習A(工業系)	4	1	1	1	1	エ	専攻教員	
物質化学工学特別実験A(理科系)	6	2	2	4	4	理	専攻教員	
物質化学工学特別実験A(工業系)	6	2	2	4	4	工	専攻教員	
科学英語特論	2		2		2	エ	非常勤講師	
学外実習 (インターンシップ)	2							
理工学教育研修 (理科系)	2					理	専攻教員	
理工学教育研修 (工業系)	2					工	専攻教員	
研究開発実践演習 (長期派遣型)	4							
			l	<u> </u>	L	L		l

- (注) 1. *印は,隔年開講とする。
 - 2. *印以外は、原則として毎年開講とする。
 - 3.「教職科目」欄の「理」は教員免許教科「理科」、「工」は「工業」のそれぞれの教科に関する科目を示す。
 - 4. 備考欄の「英語可」は、留学生の理解を助けるため、英語を併用した授業が可能な講義科目を示す。
 - 5. 理工学教育研修は理科系もしくは工業系のどちらか一方しか履修できない。

物質化学工学専攻 授業科目の内容

物貝化子工子导攻	技条件日の内谷	
授業科目名	授業科目の内容	担当教員
有機機能化学特論 Chemistry of Functional Organic Molecules	ホスト・ゲスト化学,超分子,生体機能材料,身のまわりの材料など幅広い有機機能材料およびその化学について概観し,これを元に新たな分子・材料を設計・開発する方法を解説する。また,将来実現が期待される最新の技術についても述べる。	教授 伊藤和明 教授 落合文吾
エネルギー化学特論 Advanced Chemistry of Energy	エネルギーを物質に蓄えたり、その蓄えたエネルギーを放 出するための物質の選択、組み合わせの方法のモデルとし て電池およびキャパシタをとりあげ、その機能発現と設計 について論ずる。	教授 仁 科 辰 夫 准教授 立 花 和 宏
分析化学特論 Analytical Chemistry	物質の分離・計測を目的とした場合の物質と物質の相互作用,物質とエネルギーの相互作用の化学について解説し,センシング機能,分離機能のシステム構築について論ずる。	准教授 遠 藤 昌 敏 准教授 伊 藤 智 博
固体化学特論 Solid State Chemistry	固体の合成および固体の化学的・光学的・電気的性質,固体の評価法について解説する。	教授 鵜 沼 英 郎 准教授 松 嶋 雄 太
物理化学特論 Advanced Physical Chemistry	低温超伝導から高温超伝導に及ぶ理論,物性と応用を,結晶 構造の観点から論ずる。	教授 神 戸 士 郎 教授 吉 田 司
構造有機化学特論 Advanced Structural Organic Chemistry	分子の集合による自発的な構造形成は、生命化学あるいは 有機機能性材料化学において極めて重要な役割を担ってい る。本講義では、分子集合体に欠かせない分子間力の特性、 機能について述べる。	准教授 増 原 陽 人 准教授 片 桐 洋 史
有機合成化学特論 Advanced Synthetic Organic Chemistry	実用的な有機合成化学について講義する。学部の有機化学 の講義では十分に触れることができない、有機金属化学、 触媒化学、保護-脱保護の化学、天然物の全合成などについ て学ぶ。	教伊教落准增准片助皆时 一种
反応変換工学特論 Chemical Conversion Engineering	様々な反応における反応速度論を扱う。具体的には、複合 反応、イオン間反応、生物反応、光化学反応等である。反 応速度と熱力学的パラメータの関係、流れの場内での反応 速度等についても取り上げる。	教授 會 田 忠 弘 助教 樋 口 健 志
移動現象論 Transport Phenomena	粘性流体中における運動量,熱および物質の移動について体系的に論ずる。移動機構の相似性,移動方程式とその取扱い手法に関する基礎について講義する。	准教授 桑名一徳
プロセス流体工学特論 Process Fluid Flow	化学プロセスで遭遇する流体の種類や特性について講じ, またそれらの工学的取扱い手法や応用例まで言及する。さらに,近年着目されている新規機能性流体の特性を解説し, 実用例を講義する。	准教授門 叶秀 樹

授業科目名	授業科目の内容	担当教員
化学工学熱力学特論 Chemical Engineering Thermodynamics	熱力学における基本原理を体系的に論じ、化学プロセスの 設計・運転において熱力学の果たしている役割について解 説する。	准教授 宍 戸 昌 広
粉体工学特論 Powder Technology	本講義では、粉体工学における粉体基礎物性(密度、粒子径、粒子形状、強度、充填性、流動性など)の詳細について解説し、それに関連する粉体力学的性質との関連性を説明する。さらに、粒子生成プロセスと生成粒子の特性に関する講義を行う。	教授 木 俣 光 正 助教 小 竹 直 哉
分離工学特論 Advanced Separation Process	物質の分離・精製を目的とする工業装置の設計や操作手法 について物質移動の観点から解説する。特に相平衡を利用 しての分離プロセスを対象に物質移動の支配現象や移動機 構について説明する。	准教授 松 田 圭 悟
界面物理化学特論 Advanced Interfacial Engineering	ナノ〜ミクロンオーダーのコロイドやスラリー中の粒子の分散・凝集挙動とその界面で起こる現象について講義する。 さらに、マイクロ空間を利用したナノ粒子合成や電子部品・医薬品・食品・化粧品への応用事例を学び、ナノ粒子を支配する因子や界面で起こる特別な現象を理解する。	教授 木 俣 光 正 准教授 野々村 美宗 (バイオ化学エ学専攻)
物質化学工学特別演習 A (理科系) Special Exercises in Chemistry and Chemical Engineering	物質化学工学の専門分野, すなわち機能分子化学, 環境エネルギー化学および化学システム工学に関する専門知識をもとに, それらの工学的応用についての文献を輪読演習する。	専 攻 教 員
物質化学工学特別演習 A (工業系) Special Exercises in Chemistry and Chemical Engineering	物質化学工学の専門分野, すなわち機能分子化学, 環境エネルギー化学および化学システム工学に関する専門知識をもとに, それらの工学的応用についての文献を輪読演習する。	専 攻 教 員
物質化学工学特別実験 A (理科系) Special Experiments in Chemistry and Chemical Engineering	物質化学工学の専門分野, すなわち機能分子化学, 環境エネルギー化学および化学システム工学に関する専門知識および実験技術をもとに, 学生一人一人が創意工夫をし, それらの工学的応用の研究課題についての実験研究を行う。	専 攻 教 員
物質化学工学特別実験 A (工業系) Special Experiments in Chemistry and Chemical Engineering	物質化学工学の専門分野,すなわち機能分子化学,環境エネルギー化学および化学システム工学に関する専門知識および実験技術をもとに、学生一人一人が創意工夫をし、それらの工学的応用の研究課題についての実験研究を行う。	専 攻 教 員
科学英語特論 Advanced Science English	今まで英語というととにかく覚えること、暗記することに 終始していたはず。この講義では、英語を覚えるのではな く「使う」ことを重視する。英語を使って、自分が伝えた いことを表現(話す、書く)するためにはどうすればいい かを一緒に考え、練習する。	非常勤講師
学外実習 (インターンシップ) Internship	企業などにおいて、自らの専攻や将来の経験に関連した就業体験を行う。大学教育とは異なる、高い職業意識と自立心・責任感のある社会人となるための育成を目的とした実習である。業界や業種等に関する事前の調査、実習、事後の実習報告などにより職業意識の向上を図る。	

授業科目名	授業科目の内容	担当教員
理工学教育研修(理科系) Education Training in Science	担当教官の指導を受けながら、学部の製図・実験・実習・ 演習などの実務教育研修を行う。教えることは学ぶことで ある。理科教育の在り方・指導の在り方を実地に学ぶ。	専 攻 教 員
理工学教育研修(工業系) Engineering Education Training	担当教官の指導を受けながら、学部の製図・実験・実習・ 演習などの実務教育研修を行う。教えることは学ぶことで ある。工学教育の在り方・指導の在り方を実地に学ぶ。	専 攻 教 員
研究開発実戦演習 (長期派遣型) Practice for Research and Development	企業現場において,当該企業の協力を得ながら,企業分析・ 産業分析を行い,課題発見と改善提案を行う。また,企業 研究者と共同で開発研究活動を行う。	

バイオ化学工学専攻 教育目標とカリキュラム

バイオ化学工学専攻の教育理念と教育目標

化学を基盤とする学問領域は、近代の物質の生産に欠かすことのできない重要な学問領域である。有機化学、無機化学、分析化学、物理化学といった基礎学問は、我々の生活のいたるところで潜在的に垣間見ることができ、医薬、農薬、材料、衣料、測定機器、デバイスといった形で我々の生活に大きく貢献している。

一方,近年の生命科学の発展は目覚ましく、その成果はたんぱく質、遺伝子、細胞といった生命現象をつかさどる生体物質の応用という形で、新しい学問領域を構築してきた。この学問領域は、バイオ工学と呼ばれ、多くの産業分野に応用されると共に、現在、人類が直面するエネルギー、食糧、環境、医療などの問題を解決する切り札として、強い社会的要求に応えると期待されている。

本専攻では、現在の我々の生活を支えている化学と、未来の生活を支えるであろうバイオ工学を融合させたバイオ化学工学に関する教育・研究を行う。本専攻における教育の目指すところは、豊かな教養と高度専門知識を備えた人材、すなわち、時代とともに変化する社会の要請や新たな学際領域にチャレンジする好奇心あふれる研究者および専門技術者の育成である。

本専攻の教育目標を達成するために次のような学習目標を掲げる。

A) 生物—化学に関する高度専門知識の習得

細胞科学,酵素工学,遺伝子工学,生理学,生体機能科学,合成化学,資源科学,界面科学,プロセス工学に関する高度専門知識を身につける。

B) 専門分野における研究企画能力の習得

独立した研究者および専門技術者としての信念に基づいた、研究の立案、遂行、及び結果 を解析し取りまとめる能力、並びにプレゼンテーション能力を身につける。

C) 豊かな創造性と独創性の涵養

バイオ化学工学研究者および専門技術者として,学問全般に至る幅広い視野と社会正義の 実現を願う確固たる倫理観を養うとともに、豊かな創造性と独創性を涵養する。

学位論文審査基準

本専攻では、学位論文に係る以下の1から4までのすべての審査基準を満たしていると判断されたものを合格とする。

- 1. 山形大学大学院理工学研究科(工学系)ディプロマ・ポリシーにしたがい,学位論文として適切な形式を踏まえていること。
- 2. バイオ化学工学に関わる新規現象や課題に取り組み、健全な社会生活に貢献できる意義が明確であること。
- 3. 博士前期課程在学中に行われる中間発表会及び公聴会において、研究計画と研究経過 およびそのプレゼンテーションが適切と認められること。ならびに発表後の質疑応答 において研究に対する理解と取組が十分であると認められること。
- 4. 論文の構成について、審査委員(主査、副査)により下記の全ての項目が適切であると認められること。
 - (1) 論文の題名が適切であること。
 - (2)研究背景が論理的に記述され、研究目的が明確であること。
 - (3)目的に沿った研究方法であること。
 - (4) 結果および考察の導き方が妥当であること。
 - (5)目的に沿った結論が出されていること。
 - (6) 文献が適切に用いられていること。
 - (7) 図表・資料が適切に表示されていること。
 - (8)要旨については所定の形式を踏まえていること。

バイオ化学工学専攻 授業科目及び単位数表

	7 -		<u> </u>	- XX 2X	•			
	単位					教職		
授業科目名			年度		年度	科目	担当教員	備考
	数	前期	後期	前期	後期	711		
細胞工学特論	2			2		理	阿部, 黒谷	
感覚生理学特論	2				2	理	恒成	
生体機能分子化学特論	2				2	理	佐藤(力)	英語可
生物機能工学特論*	2		2		2	理	真壁, 矢野	
生体物質化学特論*	2		2		2	理	佐藤(慎), 木島	
精密有機合成化学特論*	2		2		2	理	波多野	英語可
生物有機化学特論	2			2		理	今野	英語可
有機資源変換化学特論	2	2				理	多賀谷	英語可
有機物質化学特論	1						非常勤講師	
生体高分子構造解析特論	2		2			理	神保	
コロイド分散・界面化学特論	2			2		理	野々村,木俣	英語可
バイオプロセス工学特論	2		2			理	高畑	
環境システム工学特論	1						非常勤講師	
無機生体材料特論	2	2				理	川井	
無機物質化学特論	1						非常勤講師	
バイオテクノロジー特論	2		2			理	横山	
バイオ化学工学特別演習A*	4	1	1	1	1	理	専攻教員	
バイオ化学工学特別実験A*	6	2	2	4	4	理	専攻教員	
科学英語特論*	2		2		2		非常勤講師	
学外実習*	2							
理工学教育研修*	2					理		
研究開発実践演習(長期派遣型)*	4						専攻教員	
		_						

- (注) 1. *印は,毎年開講とする。
 - 2. *印以外は、原則として隔年開講とする。
 - 3.「教職科目」欄の「理」は教員免許教科「理科」の教科に関する科目を示す。
 - 4. 備考欄の「英語可」は、留学生の理解を助けるため、英語を併用した授業が可能な講義科目を示す。

バイオ化学工学専攻 授業科目の内容

ハイオ化学工学専攻	技未付日の内谷	
授業科目名	授業科目の内容	担当教員
細胞工学特論 Cell Engineering	生体の生命活動には、極めて多くの生物現象が関わっている。本特論では、細胞の代謝や病変、動物の発生・生殖などをテーマに、生命の最小単位である細胞の構造と機能を学とともに、細胞の機能解析に不可欠な先端計測技術や解析手法について理解を深める。本特論では、細胞工学や発生工学の先端技術によってどのような研究成果が得られ、社会に貢献しているかについても講義する。	教授 阿 部 宏 之 准教授 黒 谷 玲 子
感覚生理学特論 Sensory Signal Transduction	・生体は常に外界からさまざまな情報を取得・処理して行動している。その際に重要な働きを成している感覚機能について学習し、各感覚の特性、感覚器官の機能、感覚細胞の情報変換機構について理解することを目標とする。 ・ヒトや動物の感覚における機能や原理、感覚研究について学ぶことによって、我々がどのように外界からの情報を取得しているのかを理解する。	准教授 恒 成 隆
生体機能分子化学特論 Chemistry of Biofunctional Molecules	生体を構成する核酸、タンパク質、多糖、脂質、生物ラジカルなどの機能性分子に着目した材料設計の基礎と応用について学び社会とのかかわりを考え理解することを目標とする。生命現象を制御できる機能性高分子材料の構造と機能について多面的に考察を行い、最新の分子設計手法を理解する。	准教授 佐藤力哉
生物機能工学特論 Biofunctional Engineering	生物機能工学では、生物が有する機能や特性を明らかにし、傷害、疾患の予防や治療に貢献する技術、また、生物が有する優れた機能を利用し、有用物質生産、農業生産や環境浄化に関する技術を取り扱う。本講義では、生物機能工学の基礎となる遺伝子工学やタンパク質工学を概説するとともに、実例を示しながら最新の技術についても解説する。	准教授 真 壁 幸 樹 助教 矢 野 成 和
生体物質化学特論 Chemistry of Biologically Active Compounds	生体成分や生理活性物質の種類・機能・合成方法について 学ぶ。佐藤は、糖質化学を中心に基礎から医薬品への応用 までを解説する。木島は、酵素やタンパク質について、酵 素機能の改変、有機合成化学への利用を中心に解説する。	教授 佐藤慎吾 准教授 木島龍朗
精密有機合成化学特論 Advanced Organic Synthesis I	種々の有機化学反応の合成反応を学ぶことによって,反応 条件や反応機構,さらに,反応に用いる試薬に関する知識 を習得する。習得した合成反応の知識を生かし,実際の修 士論文研究に応用することを目標とする。	准教授 波多野 豊平
生物有機化学特論 Bioorganic Chemistry	天然有機化合物のみならず有機分子を構築する上で必須 の立体化学制御法,有機分子構築法を理解し,自らの研究 に適応できる能力を培うことを目的とする。最近,合成さ れた天然物やその誘導体をケミカルプローブとして用い, その生理活性の発現メカニズムを研究するケミカルバイ オロジーが脚光を浴びている。創薬研究とあわせて最近の 進歩を紹介する。	准教授 今 野 博 行
有機資源変換化学特論 Chemistry of Organic Reactions and Materials	化学資源やバイオマス資源など多様な有機資源の変換・利用反応について、今後の応用が期待できる英文トピックスを取り上げ、それらのプレゼンテーションを行なう。トピックスに対する背景や手法、現状での結果や期待できる成果などの報告・質疑応答により、資源変換化学における科学的問題へのアプローチと課題解決への展開能力の向上を到達目標とする。	教授 多賀谷 英幸

授業科目名	授業科目の内容	担当教員
有機物質化学特論 Applied Organic Chemistry	食品内に生じる熱と物質移動の基本的な現象について説明し、食品産業で重要な食品の冷凍、殺菌、品質の変化(蛋白変性、澱粉の糊化、旨味成分の変化等)について概説する。次いで、電子レンジ加熱等の各種加熱操作について概説する。	非常勤講師
生体高分子構造解析特論 Structural Analysis of Biopolymers	生体高分子は自らの形態変化や分子凝集を伴って機能を発現させている。本講義では、光・X線・中性子線および NMR等を用いた生体高分子の構造解析法を紹介し、得られた構造情報と機能との相関を体系的に論じる。応用例として、生体高分子のゲル化現象に対する最近の研究例を紹介する。	助教神 保雄次
コロイド分散・界面化学 特論 Colloid Dispersion and Interface Science	ナノ〜ミクロンオーダーのコロイドやスラリーの分散挙動とその界面で起こる現象について講義する。特にコロイドやスラリー中の粒子に着目した分散・疑集のメカニズムをDLVO理論をもとに解説するとともに、界面活性剤や両親媒性分子を用いた界面物性の制御方法について講義を行う。さらに、マイクロ空間を利用したナノ粒子合成や医薬品・食品・化粧品への応用事例を学び、ナノ粒子を支配する因子や界面で起こる特別な現象を理解する。	准教授野々村美宗教授大俣光正(物質化学工学専攻)
バイオプロセス工学特論 Advanced Bioprocess Engineering	生物を利用した工業生産プロセスや環境保全プロセスシステムを対象に、生物反応の定量的な把握に主眼を置き、バイオリアクターならびにバイオセパレーションデバイスの設計について学ぶ。	助教 高 畑 保 之
環境システム工学特論 Advanced Environmental System Engineering	エネルギー生産,消費や工業用水,排水の取り扱いにおいて,環境を保全することが重要である。環境保全の立場からこれらのエネルギー,水の扱い方,システム等を解説する。	非常勤講師
無機生体材料特論 Inorganic Biomaterials	生体硬組織の構造および機能について解説し、その代替・修復を可能にする材料の設計指針およびその評価方法について解説する。さらに、無機生体材料に関する最新の情報を講義する。	准教授川 井 貴 裕
無機物質化学特論 Applied Inorganic Chemistry	エネルギー,資源および環境問題について解説し,今後 重要な課題と考えられる電気化学エネルギー変換におけ る材料設計に関する最新情報を講義する。さらに,新技 術開発と技術者倫理に関する講義を行う。	非常勤講師
バイオテクノロジー特論 Advanced Biotechnology	生物の身体の中では様々な生命現象が起きており、それらに関わる多くの生体反応や生体機能が分子レベルで理解できる時代となっている。本特論では分子レベルにおける生命現象を理解し、医療、創薬、食品分野におけるバイオテクノロジーなどの応用となる事項を学び、考察する。	横山 智哉子

授業科目名	授業科目の内容	担当教員
バイオ化学工学特別演習 A Special Exercises in Biochemistry and Chemical Engineering	修士論文の研究に向けてバイオ化学工学の専門分野における各種の研究課題について演習を行い、指導教員との輪講演習によって、高度な知識と論理的思考能力、コミュニケーション能力等を養う。授業の概要修士論文のための実験や計画に向けて、専門分野の基礎的な文献を輪講演習することにより、外国語の能力を養うとともに、必要な情報を収集する能力を訓練する。	専 攻 教 員
バイオ化学工学特別実験 A Special Experiments in Biochemistry and Chemical Engineering	バイオ化学工学専門分野の研究における知識と技術を系統的に修得し、研究課題についての実験を行うことで、研究を計画的に実行できる能力を養成する。 授業の概要 バイオ化学工学関連各専門分野における各種研究課題について実験を行う。	専 攻 教 員

応用生命システム工学専攻 教育目標とカリキュラム

学位論文審査基準

- 1. 山形大学大学院理工学研究科(工学系)ディプロマ・ポリシーに従い,学位論文として適切な形式を踏まえていること。
- 2. 修士学位論文は、新規性または独創性があって応用生命システム工学に関連する分野における新しい知見をもたらすか、または当該分野における研究遂行に必要な基礎知識・理解力・問題解決能力等を証明する、独自の考察を含んだ論文であること。
- 3. 博士前期課程在学中に行われる中間発表会において、研究計画と研究経過およびそのプレゼンテーションが適切と認められること。ならびに発表後の質疑応答において研究に対する理解と取組が十分であると認められること。
- 4. 論文の構成について
- (1) 論文の題目が適切であること。
- (2) 研究の背景が記述され、研究目的が明確であること。
- (3) 研究方法が記述されており、目的に沿った方法であること。
- (4) 結果が図表等を用いて適切に示されていること。
- (5) 考察が結果に基づいて適切に導き出されていること。
- (6) 目的に対応して結論が適切に導き出されていること。
- (7) 引用文献が適切に用いられていること。
- 5. 提出された学位論文は審査委員(主査,副査)によって審査されること。
- 6. 審査基準1から5までのすべてを満たしたものを合格とする。

応用生命システム工学専攻 授業科目及び単位数表

心川工師シハノムエテ寺久	1	開講		<u>・</u> ブ週時				
授業科目名	単位	中 内部列及 0 週 时		担当教員	備考			
		前期	後期	前期	後期	科目		
生体材料学	2		2		(2)	工	山本(修)	英語可
バイオインフォマティクス	2		2		(2)		木ノ内	
生体システム特論	2	2		(2)			馮	英語可
生理機能の計測と解析	2	2		(2)			新関	英語可
光ナノ計測	2		2		(2)	工	堀田	英語可
細胞運動論	2	2		(2)			羽鳥	
医用画像工学論*		2				工	湯浅	英語可
データ解析論*				2		工	湯浅	英語可
ロバスト制御理論	2	2		(2)		工	村松	
集積回路工学*	2		2			工	横山(道)	
高周波集積回路システム*	2				2	工	横山(道)	
マイクロプロセッサ応用工学特論	2		2		(2)	工	金子	英語可
ロボット工学特論	2	2		(2)		工	井上 (健)	英語可
光計測工学*	2				2	工	渡部 (裕)	
応用生命システム工学特別演習A	4	1	1	1	1	工	専攻教員	
応用生命システム工学特別実験A	6	2	2	4	4	工	専攻教員	
応用生命システム工学特論	2	2		(2)		工	非常勤講師	
文献調査	2	2		(2)		工	専攻教員	
学外実習 (インターンシップ)	2							
研究開発実践演習(長期派遣型)	4							

(注) 1. *印は,隔年開講とする。

- 2. *印以外は、原則として毎年開講とし、()内の数字は30年度の開講予定週時間数を示す。
- 3.「教職科目」欄の「工」は、教員免許教科「工業」の教科に関する科目を示す。
- 4. 備考欄の「英語可」は、留学生の理解を助けるため、英語を併用した授業が可能な講義科目を示す。

応用生命システム工学専攻 授業科目の内容

授業科目名	授業科目の内容	担当教員
生体材料学 Biomaterials	先進医療の発展に伴い、様々な人工材料が生体に適用されている。これらの生体材料の開発動向、種類および生体適用箇所などを論じ、生体材料を開発する上での理論的指針について講義する。	教授山 本修
バイオインフォマティクス Bioinformatics	情報工学と生命科学の融合分野であるバイオインフォマティクスについて講義する。ゲノム, プロテオーム等の膨大なデータから生命情報・遺伝情報を解明するための方法を論ずる。	准教授 木ノ内 誠
生体システム特論 Biological System Engineering	本講義は in vivo と in vitro の生体システムを比較しながら展開する。生体の恒常性と細胞培養環境の作り、呼吸システムと培養細胞の酵素取り込み、生体反応・創傷癒合とバイオマテリアルと生体との相互作用を対照的に学ぶ。最後はバイオリアクタと 3D プリンティングの再生医療工学への応用を解説する。	准教授
生理機能の計測と解析 Analysis of Physiological Functions	ヒトの生理機能を情報システム的観点から理解することを目的として,生体信号計測手法とその解析法及びデータの解釈について講義する。特に骨格筋のエネルギー代謝の無侵襲計測,呼吸循環調節系のシステム同定などについて最近の話題を交えながら解説する。	教授 新 関 久 一
光ナノ計測 Optical Nanoscopy	光学顕微鏡は様々な研究分野において微細構造を非破壊・非接触に観測する手法として広く利用されている。本講義では、光学顕微鏡の基礎からナノ計測に利用されている単一分子分光法、超解像蛍光顕微鏡まで応用例を紹介しながら解説する。	准教授 堀 田 純 一
細胞運動論 Introduction to Cell Motility	生命活動を支える細胞運動の基盤となるタンパク質運動に関して論ずる。特にモータータンパク質と細胞骨格との相互作用を主題とし、無秩序な分子運動から非対称の運動が発生する仕組みや化学力学エネルギー変換機構について解説する。	准教授 羽 鳥 晋 由
医用画像工学論 Medical Imaging Technology	現在臨床で用いられている X線 C T やMR I などの医用断層画像化技術について, データ取得およびデータ処理の観点から講義する。	教授 湯 浅 哲 也
データ解析論 Data Analysis	計測データと計測過程を表す物理モデルから,所望の情報 を抽出する方法について,線型代数,統計学,情報理論的 側面から考える。	教授 湯 浅 哲 也
ロバスト制御理論 Robust Control	制御対象のモデル化誤差はモデルに基づいて設計した制御系の安定性に影響を及ぼすが、近年、モデル化誤差に対してロバストな制御系の設計理論が発展してきた。本講義ではロバスト制御、特にH無限大制御を中心に、基礎的な理論と応用法について講義する。	准教授 村 松 鋭 一
集積回路工学 Integrated Circuits Design Engineering	半導体集積回路に使用されるMOS(Metal Oxide Semiconductor)トランジスタの構造,電気的特性の解析などを pn 接合理論,トランジスタのゲート閾値電圧の解析などから起論している。なお,実際のMOS集積回路についても,製造プロセス・基本回路から応用回路まで講義する。	准教授 横 山 道 央
高周波集積回路システム Radio-Frequency Integrated Circuits System	近年急速に普及した携帯電話等ギガヘルツ帯移動体通信 に用いる半導体集積回路システムについて,基礎から応用 までを概説する。	准教授 横 山 道 央

授業科目名	授業科目の内容	担当教員
マイクロプロセッサ応用工 学特論 Applied Microprocessor	マイクロプロセッサ関連技術の進展とその応用例について、ハード、ソフト両面から論じ、マイクロプロセッサを応用して外部機器の制御を行う場合に理解が必要となる各種インターフェース及びソフトウエアについての概要と、最近の様々な応用機器類について論じる。	准教授 金 子 勉
ロボット工学特論 Advanced Robotics	本講義では、ロボットアームと移動ロボットを中心に、解説と研究事例紹介を行う。前半は、ロボットアームの動力学、位置制御、力制御について講義する。後半は、車輪式移動ロボット、多脚ロボット、ヒューマノイドロボット等の機構や制御法に関する研究事例を紹介する。	教授 井 上 健 司
光計測工学 Optical Sensing and Metrology	生体機能センシング等の科学計測に様々な光測定技術が利用されているが、それらの基礎知識と理論を論ずる。内容としては、共焦点顕微鏡、光干渉計測等の原理と応用例、それらを基にした生体光イメージングの原理と応用を紹介する。	准教授 渡 部 裕 輝
応用生命システム工学特別 演習 A Colloquium	専門分野についての基礎的文献および応用文献をもとにした演習を行う。	専 攻 教 員
応用生命システム工学特別 実験 A Research Programs for Master Thesis	専門分野の基本を修得し,研究課題についての実験研究を 行う。	専 攻 教 員
応用生命システム工学特論 Advanced Bio-System Engineering	情報のいろいろな分野の第一線で活躍する専門家から最 先端の技術や科学の講義を受け、質疑応答し、報告書を提 出して添削を受ける。	非常勤講師
文献調査 Literature Survey	受講者それぞれが、修士論文にのみ没頭して視野が狭くなるのを防ぐために、修士論文と重複しないようにテーマを選び、関係論文を10ないし20報を読破して、総合的に解説する。	専 攻 教 員
学外実習 (インターンシップ) Internship	企業などにおいて、自らの専攻や将来の経験に関連した就業体験を行う。大学教育とは異なる、高い職業意識と自立心・責任感のある社会人となるための育成を目的とした実習である。業界や業種等に関する事前の調査、実習、事後の実習報告などにより職業意識の向上を図る。	
研究開発実践演習 (長期派遣型) Practice for Research and Development	企業現場において、当該企業の協力を得ながら、企業分析・産業分析を行い、課題発見と改善提案を行う。また、 企業研究者と共同で開発研究活動を行う。	

情報科学専攻 教育目標とカリキュラム

情報科学専攻の学習・教育目標

情報科学は人間の知的な営みに関わる総合的な科学である。それは先端科学技術分野における創造活動の基盤として、様々なシステムを構築・運用する技術を支え、社会を動かす原動力となっている。情報科学の役割と影響力は今後益々大きくなり、多様な要求や社会環境の変化に柔軟に対応する活力と新しいものを産み出す技術力が強く求められている。この状況・要請に対応できるよう教育プログラムを整備し、先端的な学術研究を行う中で技術開発を先導できる人材や幅広い分野で高度情報・ネットワーク社会に貢献できる人材の育成を目指す。

これを明確化して、専攻の学習・教育目標を次のようにかかげる。

- (A) 情報科学に関する深い知識と応用力:
 - 知識情報科学,情報メディア科学の技術分野に関わる深い知識を修得し,情報科学の 先端的分野に自在に応用できる能力を養う。
- (B) 関連技術分野に関する幅広い知識: 情報科学を基盤とするシステムの機能実現に関わるシステム工学や電子工学などの関連技術分野に関する幅広い知識を養う。
- (C) 技術的問題の調査分析力:
 - 必要とする技術を識別・調査し体系化された知識として修得する能力や、情報科学の 技術分野に関わるモデル・システムを分析・概念化する能力を養う。
- (D) 課題設定・問題解決能力:
 - 新しい対応が求められる情報科学の課題を設定・定式化し仮説を検証する能力や,問題解決に革新的な方法を適用し創造性を発揮できる能力を養う。
- (E) 社会・人間関係スキル:
 - 論理的な思考力・記述力、発表・討議能力、コミュニケーション能力、リーダーシップ能力、チームワーク力、行動力を養う。

学位論文審杳基準

- 1. 山形大学大学院理工学研究科(工学系)ディプロマ・ポリシーに従い,学位論文として適切な形式を踏まえていること。
- 2. 修士学位論文は、新規性または独創性があって情報科学に関連する分野における新しい知見をもたらすか、または当該分野における研究遂行に必要な基礎知識・理解力・問題解決能力等を証明する、独自の考察を含んだ論文であること。
- 3. 論文の構成について
- (1) 論文の題目が適切であること。
- (2) 研究の背景が記述され、研究目的が明確であること。
- (3) 研究方法が記述されており、目的に沿った方法であること。
- (4) 結果が図表等を用いて適切に示されていること。
- (5) 考察が結果に基づいて適切に導き出されていること。
- (6) 目的に対応して結論が適切に導き出されていること。
- (7) 引用文献が適切に用いられていること。
- 4. 提出された学位論文は、上記 1 から 3 の基準をすべてに満たしていると審査委員(主査,副査)に判定されること。なお、2 年目当初に中間審査、論文提出前に予備審査を行う。

情報科学専攻 授業科目及び単位数表

	単		期及で	 が週時	間数	教職	
授業科目名	位	29年度			年度	科目	担当教員 備考
	数		後期	前期	後期		
応用音声言語処理*	2	2				情	小坂
計測情報論*	2				(2)	エ	平中
複雑系概論*	2			(2)		工	田中
情報処理特論*	2		2			情	田村(安)
コンピュータネットワーク特論*	2		2			情	小山 (明)
応用センサ工学*	2				(2)	工	柳田
有限•境界要素法*	2		2			工	神谷
ヒューマンインタフェースと人間中心設計*	2			(2)		工	野本
画像処理工学概論*	2			(2)		情	深見
視覚情報処理概論*	2				(2)	工	山内
計算量理論概論*	2	2				情	内澤
統計的機械学習概論*	2	2				情	安田
心理物理学概論*	2			(2)		情	永井
神経情報処理*	2	2				情	久保田
数値シミュレーション概論*	2				(2)	工	齋藤
情報科学特別演習A(情報系)	4	1	1	1	1	情	専攻教員
情報科学特別演習A(工学系)	4	1	1	1	1	工	専攻教員
情報科学特別実験A(情報系)	6	2	2	4	4	情	専攻教員
情報科学特別実験A(工学系)	6	2	2	4	4	工	専攻教員
情報科学特論 (情報系)	2	2		(2)		情	専攻教員
情報科学特論 (工学系)	2	2		(2)		工	専攻教員
情報処理技術特論	2		2		(2)	情	専攻教員
文献調査 (情報系)	2		2		(2)	情	専攻教員
文献調査 (工学系)	2		2		(2)	工	専攻教員
学外実習 (インターンシップ)	2						
研究開発実践演習(長期派遣型)	4						

(注) 1. *印は,隔年開講とする。

- 2. *印以外は、原則として毎年開講とし、()内の数字は30年度の開講予定週時間数を示す。
- 3.「教職科目」欄の「情」は教員免許教科「情報」、「工」は「工業」の教科に関する科目を示す。
- 4. 備考欄の「英語可」は、留学生の理解を助けるため、英語を併用した授業が可能な講義科目を示す。

情報科学専攻 授業科目の内容

授業科目名	授業科目の内容	担当教員
応用音声言語処理 Applied Spoken Language Processing	音声言語による機械とのコミュニケーションのための各種 技術について論じる。連続音声認識システム,音声対話シ ステム,分散音声認識システム等について,その応用と今 後の展開を解説する。	教授小 坂 哲 夫
計測情報論 Instrumentation Informatics	意味のある情報を如何に取り出すかについて,各情報計測分野の典型的な例を基に考究し,モデル計測,アクティブ計測,時間軸精度変換,多次元計測などの方法論,インターネットの特性測定などをテーマに議論したい。	教授平中幸雄
複雜系概論 Introduction to Complex System	自然界に多く見られる複雑系のメカニズムに広く触れ、物の形の生成過程を論ずるとともに、カオスやフラクタル等の複雑系の概念の意味を考えながら、その応用について論ずる。	准教授 田中 敦
情報処理特論 Sensor Informatics	情報,特にセンサ情報の収集・処理を行うシステムに関して講義する。初めにセンシングシステムのモデルとその特性を記述する数学的手法を導く。次に,収集されたデータから対象の情報を抽出する種々の方法を逆問題解法の立場から論じ,実際のシステムの数理的解釈を与える。	教授田村安孝
コンピュータネットワーク 特論 Computer Networks	階層化プロトコルの概念や各層で用いられている各種プロトコルの詳細について解説する。さらにアドホックネットワークやセンサーネットワークの経路制御やメディアアクセス制御に関する研究事例の紹介を行う。	教授小山明夫
応用センサ工学 Applied sensing technology	計測システムに用いられる超音波、磁気、X線、赤外線などのセンサおよび送信器の最新の技術を調査し、現在求められている特性や分解能などのニーズについて理解する。これらのセンサの原理とその応用について代表的なものについて学習し、計測システム全体の機能実現のためのセンサの役割などについて理解する。必要に応じてセンサ後段の回路や信号処理についての理解も深める。	准教授 柳 田 裕 隆
有限・境界要素法 Finite and Boundary Element Method	数理モデル化された理工学分野の諸問題を支配する偏微分 方程式を数値的に解析する手段として,領域型解法である 差分法,有限要素法を概観し,最近有力な手段としての境 界型解法である境界要素法について理論と実際的な応用と を論じ,最終的に得られる大型連立一次方程式の並列数値 解法まで言及する。	教授神 谷 淳
ヒューマンインタフェース と人間中心設計 Human Interface and Human-Centered Design	ユーザーが理解しやすく使いやすい情報システムを設計することは、高度な産業システムから日常の民生機器まであらゆる製品にとって重要な課題である。本講では、ヒューマンインタフェースの学術的理論、産業界で使われているユーザビリティ等の実践的評価方法、およびユーザーとシステムとの関係を解析するための理論と技法について学習する。	教授野 本 弘 平
画像処理工学概論 Introduction to Image Processing	さまざまな画像から所望の情報を抽出するための画像処理 及び解析手法について講義する。具体的には、周波数解析 等の基本的な処理から、クラスタリング手法や学習アルゴ リズム等のパターン認識と機械学習の技術を応用した処理 まで幅広い内容を取り扱う。	准教授 深 見 忠 典

授業科目名	授業科目の内容	担当教員
視覚情報処理概論 Visual Perception	「見る」ことは眼に入射した光を網膜上に結像させることではなく、その結像された光に対して視覚系がどのように処理を行い、最終的に中枢系が「認知」するか、といった情報処理過程全体が「見る」ことである。本講では生理学、心理物理学など光情報がどのように伝達・処理されるかといった観点のみならずコンピュータグラフィックスなども含めたさまざまな領域から視覚系の情報処理について学習する。	教授山内泰樹
計算量理論概論 Computational Complexity	計算機で解決が求められる様々な問題について、その問題が計算機にとって本質的に「難しい」のか「簡単」なのかを、計算時間やメモリ領域といった評価尺度に基づいて明らかにすることを目指す計算量理論と呼ばれる分野に関して講義する。計算時間やメモリ領域に係る計算機の基礎的な概念やその数学的性質について、具体的な例を用いて解説する。	准教授 内 澤 啓
統計的機械学習概論 Introduction to Statistical Machine Learning	統計的機械学習は確率的・統計的モデリングを基礎とした機械学習技術であり、観測データから背景に潜む確率的なメカニズムを見つけるための技術である。本講義では統計的機械学習の中で使われる数理と計算技術を理解し、現代型データサイエンスの基礎理解を目指す。	准教授 安田宗樹
心理物理学概論 Introduction to Psychophysics	人間の知覚や認知は状況や個人によるゆらぎが非常に大きいが、それをなるべく安定して客観的に測定するための実験手法が心理物理学的実験法である。本講義では、人間の知覚認知特性の基礎、その測定方法、必要とされる統計解析法などについて学ぶ。	准教授 永 井 岳 大
神経情報処理 Neural Information Processing	神経系の情報処理について学ぶことを通して、複雑な現象の本質を数理的に捉える能力を身につける。脳の生物学的な知見を概説した後、様々な脳の数理モデルとその解析法について説明する。計算論的神経科学の最新の知見に加えて、神経活動に関する非線形力学系の分岐理論についても講義する。	准教授 久保田 繁
数値シミュレーション概論 Introduction to Numerical Simulation	近年,数値シュミレーション技術は電磁界解析や構造解析の分野だけでなく,画像処理の分野にも広く使われている。本講義では、コンピュータ・グラフィックスの分野で注目されている陰関数曲面法を解説し、同法を用いた実際的な応用も論じる。	准教授

授業科目名	授業科目の内容	担当教員
情報科学特別演習A	専門分野についての基礎的文献を輪講演習することによ	専 攻 教 員
(情報系)	って, 外国語の能力を養うと同時に, 多量の情報の中から	
Colloquium	必要なものを収集する能力を訓練する。	
情報科学特別演習A	専門分野についての基礎的文献を輪講演習することによ	専 攻 教 員
(工学系)	って, 外国語の能力を養うと同時に, 多量の情報の中から	
Colloquium	必要なものを収集する能力を訓練する。	
情報科学特別実験A	専門分野の研究における基本的かつ高度な手段となる実	専 攻 教 員
(情報系)	験装置,計測機器,情報処理等についての知識と技術を系	
Research Programs for	統的に修得し,研究課題についての実験を行うことで,研	
Master Thesis	究を計画的に実行できる能力を養成する。	
情報科学特別実験A	専門分野の研究における基本的かつ高度な手段となる実	専 攻 教 員
(工学系)	験装置,計測機器,情報処理等についての知識と技術を系	
Research Programs for	統的に修得し、研究課題についての実験を行うことで、研	
Master Thesis	究を計画的に実行できる能力を養成する。	
情報科学特論 (情報系)	情報のいろいろな分野の第一線で活躍する専門家から最	非常勤講師
Advanced Informatics	先端の技術や科学の講義を受け、質疑応答し、報告書を提	
	出して添削を受ける。	
情報科学特論 (工学系)	情報のいろいろな分野の第一線で活躍する専門家から最	非常勤講師
Advanced Informatics	先端の技術や科学の講義を受け、質疑応答し、報告書を提	
	出して添削を受ける。	
情報処理技術特論	情報処理技術者など情報科学分野の専門性の高い資格試	専 攻 教 員
Information-Technology	験に合格した場合に、審査のうえ単位認定を行う。	
Engineering		
文献調査 (情報系)	受講者それぞれが、視野を広げ、修士論文のテーマを絞り	専 攻 教 員
Literature Survey	込むために関係文献を5ないし10報読破する。総合的に	
	解説する発表用資料を作成し、プレゼンテーションと質疑	
	応答を行う。	
文献調査 (工学系)	受講者それぞれが、視野を広げ、修士論文のテーマを絞り	専 攻 教 員
Literature Survey	込むために関係文献を5ないし10報読破する。総合的に	
	解説する発表用資料を作成し、プレゼンテーションと質疑	
	応答を行う。	
学外実習	企業などにおいて、自らの専攻や将来の経験に関連した就	専 攻 教 員
(インターンシップ)	業体験を行う。大学教育とは異なる、高い職業意識と自立	
Internship	心・責任感のある社会人となるための育成を目的とした実	
	習である。業界や業種等に関する事前の調査、実習、事後	
	の実習報告などにより職業意識の向上を図る。	
研究開発実践演習	企業現場において、当該企業の協力を得ながら、企業分	
(長期派遣型)	析・産業分析を行い、課題発見と改善提案を行う。また、	
Practice for Research and	企業研究者と共同で開発研究活動を行う。	
Development		

電気電子工学専攻 教育目標とカリキュラム

電気電子工学専攻の学習・教育目標

1. 教育研究の理念と目標

電気電子工学は、現在の高度情報化社会の実現に貢献してきた基盤技術であり、将来情報社会の更なる高度化・グローバル化が加速され、また少子化・高齢化福祉社会が進む中で、電気電子工学の果す役割は益々重要となってくる。

このような社会状況において、電気電子工学専攻では、産業界や社会のリーダーとなり得る 技術者・研究者を育成するとともに、教育と研究を通して、日本および世界の平和と人々の幸 福に貢献することを強く認識し、次の理念と目標に基づき教育と研究を行う。

- (1) 21 世紀の高度電子化・情報化社会,高齢化福祉社会に適合し人間にやさしく自然と調和する科学技術への貢献。
- (2) 心豊かで総合的な判断力に富み、高度な電子技術社会・情報社会に貢献できる自立した高度技術者ならびに研究者の育成。
- (3) 独創的な新技術の開発と新産業の創出。

2. 学位論文の審査および最終試験

履修基準の授業科目を習得する見込みがつき,研究指導を受けた学生は,修士論文を作成し,審査申請することができる。本専攻では研究指導として以下の2項目を満たすことも含まれる。

- (1) 研究中間発表会において研究計画と研究経過の発表を行い、関連事項に関する質疑応答の結果、研究に対する理解と取り組みが充分と認められること。
- (2) 関連する学会において研究成果を発表している、あるいは学術論文が受理されていること。 または、修了年の3月末日(9月修了の場合は9月末日)までに発表あるいは受理される 予定であること。

提出された論文は審査基準(注1)に基づき審査される。

最終試験は論文提出者が各専攻開催の公聴会において学位論文の内容を発表する際に、関連する事項に対して論文審査委員が口頭または筆答で試問を行う形式で実施する。最終試験の合格の要件は専門領域に関わる幅広い知識、論理的な思考力と表現力を用いて研究成果を明快、簡潔に発表および討議していると認められることとする。

注1. 学位論文審查基準

- (1). 山形大学大学院理工学研究科(工学系)ディプロマ・ポリシーに従い,学位論文として適切な形式を踏まえていること。
- (2). 修士学位論文は,新規性または独創性があって電気電子工学に関連する分野における新しい知見をもたらすか,または当該分野における研究遂行に必要な基礎知識・理解力・問題解決能力等を証明する,独自の考察を含んだ論文であること。
- (3). 論文の構成について
 - ① 論文の題目が適切であること。
 - ② 研究の背景が記述され、研究目的が明確であること。
 - ③ 研究方法が記述されており、目的に沿った方法であること。
 - ④ 結果が図表等を用いて適切に示されていること。
 - ⑤ 考察が結果に基づいて適切に導き出されていること。
 - ⑥ 目的に対応して結論が適切に導き出されていること。

- ⑦ 引用文献が適切に用いられていること。
- (4). 提出された学位論文は審査委員(主査,副査)によって審査されること。
- (5). 審査基準(1)から(4)までのすべてを満たしたものを合格とする。

3. 開講科目の概要

講義科目と輪講や修士論文を含む演習・実習科目で構成され、講義科目は、電気電子コア科目と電気電子応用科目から構成される。

電気電子に関する基礎的な解析を扱う電気電子コア科目は前期に開講され、回路系、電磁気系、物性系からバランスよく選択してそれぞれ2単位以上履修することを推奨する。

多様な基礎専門分野の統合を扱う電気電子応用科目は後期に開講され、各自のキャリアデザインに合わせて自由に選択して履修する。

演習・実習科目のうち、輪講演習を行う「電気電子工学特別演習 A」および修士論文の作成を行う「電気電子工学特別実験 A」は必修である。

4. 教育·研究分野

大学院における教育・研究への社会的要請に応えるため、次の各分野の教育・研究を行っている。

【応用電気工学部門】

【電子量子工学部門】

[教育·研究分野]

- ●情報通信システム・通信環境学
- ●ミリ波・サブミリ波電磁波現象
- ●電力・エネルギー
- ●パルスパワー工学
- ●静電気応用
- ●機能エレクトロニクス・システム

[教育·研究分野]

- ●半導体・センシング・集積回路
- ●超伝導エレクトロニクス
- ●光エレクトロニクス
- ●新機能デバイス・ナノデバイス
- ●先端磁気工学
- ●ミリ波テラヘルツイメージング

電気電子工学専攻 授業科目及び単位数表

		<u>, — , </u>	一等以 技条件日及	<u> </u>		<u> </u>	,							
				単		期及で	 が週時	間数		教				
	分野		授業科目名		授業科目名	単位		年度	3 0	年度	必	職	担当教員	備考
				数	前期	後期	前期	後期	修	科目				
		同	知能集積回路	2	2					工	原田			
	*	回路	結合系解析論	2	2		2			工	足立	英語可		
	電気電	系	パルスパワー工学	2			2			エ	南谷	英語可		
	電子		高電界現象論	2	2					工	杉本(俊)	英語可		
講	子コア	電 磁	応用電磁気学	2	2					工	高山	英語可		
	科	気系	高周波超伝導工学	2			2			工	齊藤	英語可		
義	目	\/\	電気力学	2			2			工	八塚	英語可		
	(解		半導体デバイス工学	2	2					エ	廣瀬(文)	英語可		
科	(解析)	物 性	真空表面工学	2	2					工	成田			
		系	超伝導工学	2			2			エ	中島	英語可		
目			半導体デバイスプロセス	2			2			エ	松下	英語可		
	,	雷	光エレクトロニクス	2		2				工	佐藤(学)	英語可		
	,	電気電子芯用科目	半導体光工学	2		2				エ	高橋(豊)	英語可		
	-	电 子	超伝導デバイス	2		2				エ	山田			
)	心 用	磁気デバイス工学	2		2				エ	稲葉	英語可		
	5	科 目	ディジタル通信工学	2				2		エ	近藤	英語可		
			光波工学	2				2		エ	高野	英語可		
	j	(統 合)	センサ工学	2				2		エ	奥山(澄)	英語可		
	`	<u></u>	半導体ナノ材料工学	2				2		工				
			最后電フェルは日本の	4	-1	-1	-1	4	6	-	古小地旦			
			電気電子工学特別演習A	4	1	1	1	1	0	工	専攻教員			
<u>;</u>	a 🚓	19 1 1 1 1 1	電気電子工学特別実験A	6	2	2	4	4	0	工	専攻教員			
演省 	!実	当科日	電気電子工学特論	2						工	非常勤講師			
			学外実習(インターンシップ)	2										

- 研究開発実践演習(長期派遣型) 4 1. (注)「教職科目」欄の「工」は、教員免許「工業」の教科に関する科目を示す。
- 2. 備考欄の「英語可」は留学生の理解を助けるため、英語を併用した授業が可能な講義科目を示す。

電気電子工学専攻 授業科目の内容

电	耒仲日の内谷 「	T
授業科目名	授業科目の内容	担当教員
知能集積回路 Intelligent Integrated Circuits	本講義の構成としては、前半では、現在の生活になくてはならない LSI 集積回路を実現するうえで必要な MOSFET の動作特性と、それを使った集積回路の回路技術(回路動作、低消費電力化設計など)を講義する。後半では、集積回路を用いたシステムについて、現在使われている分野から適用例を示しながらその構成や原理などを講義する。そして、本講義を通じて、回路設計の考え方や、講義内容と身近な応用システムとの接点と考え方について学ぶ。	助教 原 田 知 親
結合系解析論 Analytical Dynamics of Complex Systems	ハミルトンの原理等のエネルギー原理を中心とした解析力学の理論を駆使し、複雑だが線型系とみなせる電気機械結合系の動作の把握を簡潔かつ統一的に行う手法を教授する。最初に基礎的な理論を解説した後、各種電気機械変換器の解析にそれを適用する。また、応用として有限要素解析についても言及する。	教授 足 立 和 成
パルスパワー工学 Pulsed Power Engineering	パルスパワー技術は瞬間的に世界の消費電力に相当するような巨大な電力を発生させる技術であり、従来の電力技術ではできなかった新しい科学技術を可能にする。ここではパルスパワーを発生させるためのエネルギー蓄積、スイッチング、伝送技術と計測技術、環境、バイオ等の最新応用について述べる。	准教授 南 谷 靖 史
高電界現象論 Phenomena in High Electric Field	高電界下での電気力学的現象について基礎的な事項を解説する。前半は、電磁気学の基本原理(ガウスの法則、ポアソンの式、ラプラスの式など)を使った電界解析の手法について学び、空間電荷が存在するときとしないときの直交、円筒、球座標系での電界分布を計算できるようにする。後半は、高電圧の発生、電荷の発生と除去、帯電など、高電界下における基本的な事項について解説する。	准教授 杉 本 俊 之
応用電磁気学 Applied Electromagnetics	マクスウェル方程式の発見により,電磁気学は古典物理学として体系化された。一方,有限差分法,有限要素法といった数値解法が電磁界解析に応用されている。本講義では,電磁気学の基本法則を学習し,電磁界解析の具体例を紹介する。	助教 高山 彰優
高周波超伝導工学 High Frequency Superconductor Engineering	実応用で役立つ高周波の基礎について講義し、基礎的な高周波回路コンポーネントについて具体例をあげて説明する。また、超伝導の基礎的性質と代表的な理論について概説する。	准教授 齊 藤 敦
電気力学 Electromechanical Dynamics	電界系において、電気的に発生した力による力学的運動(並進運動)を、小型マイクロフォンやスピーカーなどを例とし、マクスウェルの式から出発して電気的力の表現式を導出し、運動方程式及び回路の方程式を求める。さらに静電気対策の簡単な試算や変位電流とノイズの関係も講義する。	准教授 八 塚 京 子
半導体デバイス工学 Semiconductor Devices	半導体デバイスであるpn接合のキャリア輸送機構の理解のもとに,バイポーラトランジスタおよびMOSFETの高速化限界とこれを打破するための先進テクノロジーについて講義する。	教授 廣瀬文彦

授業科目名	授業科目の内容	担当教員
真空表面工学 Vacuum Science and Engineering	多くの電子デバイスは真空環境下で作製されているため、「真空」についての理解がデバイスを作製する上で必要不可欠である。本講義では真空装置の設計を行う上で必要な事項(気体の性質、気体分子 - 固体表面等)を解説する。	助教 成 田 克
超伝導工学 Superconducting Engineering	超伝導工学の基礎として、低温技術、超伝導基礎理論(2流体モデル、熱力学、GL方程式)などについて講義する。 また、超伝導技術を応用した高周波デバイスについて解説する。	教授中島健介
半導体デバイスプロセス Processing of Semiconductor Devices	半導体デバイスの製造プロセスの基礎をイラストを用いて 講義する。『電子回路』で得た回路設計の基礎と『半導体工 学』で得た個別素子やプロセスの基礎を融合し、より高度な 半導体集積回路技術の習得を目的とする。	教授 松 下 浩 一
光エレクトロニクス Optical Electronics	光の基本的性質から、光の発生・制御・検出までを講義する。 光の基本的性質を表すパラメータ及び自然光とレーザー光 の特徴、及び光と物質の相互作用に基づいたレーザー装置の 構造、発振原理などについて述べる。さらに、光学結晶を用 いた光変調技術や高感度検出法を説明し、応用例として光計 測技術などを紹介する。	教授 佐 藤 学
半導体光工学 Semiconductor Optical Devices	代表的な発光素子である半導体レーザーと発光ダイオードについて、その材料となる半導体の基本的な性質、素子構造、動作機構について講義する。特に高速化に向けて重要となる素子内でのキャリア輸送について詳しく解説する。	准教授 高 橋 豊
超伝導デバイス Superconducting Devices	超伝導体のトンネル現象やジョセフソン接合の基礎について講義する。また、その現象を応用したテラヘルツ検出器、 X線検出器、ミキサーなどについて講義する。	助教 山 田 博 信
磁気デバイス工学 Magnetic Devices	磁性体の基礎的な性質(交換相互作用,キュリーワイス則,磁気異方性など),その計測方法について講義する。その後,磁気ディスクを中心に磁気メモリへの応用例を解説する。	教授 稲 葉 信 幸
ディジタル通信工学 Digital Communication	ディジタル通信ネットワークの要素技術について解説する。 網構成、プロトコル、伝送技術、信号処理、標準等について 述べる。また、最近は従来の有線公衆網以外による音声等の 通信も盛んだが、これについても述べ、またスペクトル拡散 等の無線通信用要素技術や将来の展望についても触れる。	教授 遊 藤 和 弘
光波工学 Photonics Engineering	光の性質を利用した信号処理機能技術に関して講義する。光 の発生・増幅と干渉の知識を基に、光波のコントロール方法 を習得するとともに、光ファイバ通信など光波制御を応用し た先端的な技術を紹介する。	准教授 高 野 勝 美
センサ工学 Sensing Devices	機械の自動化や外界の様子を知るために、様々な物理センサ・化学センサが利用されている。これらのセンサのうちから電子デバイスを中心に、その原理、製作、利用方法等について講義する。	准教授 奥 山 澄 雄

授業科目名	授業科目の内容	担当教員
半導体ナノ材料工学 Semiconductor Nanomaterials	半導体をナノスケールで構造制御すると,量子効果など微細構造特有の物性が発現する。本授業では,代表的なナノ半導体の物性と応用デバイス,今後の展望について講義する。	
電気電子工学特別演習 A Advanced Exercise of Electrical Engineering A	修士論文を作成するために,専門分野についての文献を輪講演習し,論理的思考能力,コミュニケーション能力等を養う。	専攻教員
電気電子工学特別実験 A Advanced Experiment of Electrical Engineering A	修士論文を作成するために,実験や数値シミュレーションを 主に主指導教員の指導の下で行う。	専攻教員
電気電子工学特論 Special Lecture on Electrical Engineering	電気電子工学に関連するいろいろな分野の第一線で活躍するすぐれた研究者や技術者を講師に迎え,最先端の研究や技術の講義を受ける。	非常勤講師
学外実習 (インターンシップ) Internship	企業などにおいて,自らの専攻や将来の経験に関連した就業体験を行う。大学教育とは異なる,高い職業意識と自立心・ 責任感のある社会人となるための育成を目的とした実習である。業界や業種等に関する事前の調査,実習,事後の実習報告などにより職業意識の向上を図る。	
研究開発実践演習 (長期派遣型) Practice for Research and Development	企業現場において,当該企業の協力を得ながら,企業分析・ 産業分析を行い,課題発見と改善提案を行う。また,企業研 究者と共同で開発研究活動を行う。	

機械システム工学専攻 教育目標とカリキュラム

機械系エンジニアへの社会の期待

21世紀は、新しい知識・情報・技術が政治・経済・文化をはじめ社会のあらゆる領域での活動の基盤として飛躍的に重要性を増す、いわゆる「知識基盤社会」の時代であると言われている。これからの「知識基盤社会」においては、機械系エンジニア(技術者・研究者)には人間活動のあらゆる分野で科学技術的な側面からの強力な推進役として幅広い貢献が求められている。また、「モノつくり」という観点から科学技術の発展に常に貢献し、社会や環境に与えるその波及効果と責任を常に念頭において製品開発を進めなくてはならない。したがって、機械系エンジニアには、機械工学の基礎力を身につけるだけではなく、グローバルな視点から機械をシステムとして統合する柔軟で幅広い素養をもち、かつ、進展の著しい科学技術の担い手として独創性・創造性を発揮することが社会から強く要請される。

機械システム工学専攻の教育の理念と目標

このような機械系エンジニアに対する社会の要請を踏まえて、本専攻では、機械工学の基礎に加え、生産技術、電子技術、情報・知能化システムなどの広範囲で高度な知識の上に、最先端技術を取り入れることができ、かつ、科学技術が社会や自然に与える波及効果や社会に対して技術者・研究者が負う責任を認識しながら、国際的な視点から社会と産業の発展に貢献しうる高度の専門性を有する豊かな感性と創造性をもつ技術者ならびに研究者を育成する。幅広い分野で活躍する本専攻の教員団の講義、演習及び研究指導による広い視野に立った精深な学識の習得と、博士前期課程の勉学の集大成である修士学位論文の作成とを通して、本専攻の大きな教育目標である「豊かな人間性を持ち、社会が要求する機械関連の問題を解決するデザイン能力に長けたグローバルな技術者・研究者の育成」を目指すものである。そのために、次の具体的な教育目標を掲げる。

- (1)機械関連の基礎から最先端分野において問題発見・解決能力をもった人材の育成機械材料・強度・振動,熱・流体システム,環境・エネルギー,ロボティクスおよび機械設計などの分野において,問題発見・解決能力を培うと共に,自然・人間・社会・環境と調和した新しい機械システムを創造できる柔軟な思考と果敢な実行力をもつ研究者・技術者を育成する。
- (2) 社会の要求をモノつくりに反映できるエンジニアリングデザイン能力の養成 工学的な面,経営的な面,経済・環境的な面,心理的・倫理的な面などからの社会の 要求を総合的にモノつくりやシステムつくりに反映できるエンジニアリングデザイン の能力を養成する。
- (3) 実社会をリードするグローバルな人材の育成

科学技術の発展と多様化に対応できる柔軟な思考力・構想力と国際的な情報収集,情報発信能力を養い,実社会をリードするグローバルな人材を育成する。

履修基準(8頁:「1-6 履修基準」参照)

- ① 自専攻講義科目:機械システム工学専攻の講義科目から10単位(専門基盤科目から必ず6単位以上)を修得すること。
- ② 選択講義科目:自専攻講義科目,他専攻・各専攻共通の講義科目,及び他大学院履修科目の中から10単位以上を修得すること。この場合,自専攻以外の講義科目から必ず4単位以上を修得すること。
- ③ 機械システム工学特別演習A(4単位)と機械システム工学特別実験A(6単位)を修 得すること。
 - ・修了に必要な最低修得単位数は、上記①②③の計30単位である。

学位論文審査基準

学位論文の審査にあたっては、日ごろの研究指導、学位論文審査や公聴会などをとおして、主 に以下の審査項目について、審査委員(主査、副査)による以下の評価を行う。

1. 学位論文審査の評価基準

- (a) 論文の題目や目次の適切性:問題を意識し、目標や目的を設定していること。
- (b) 研究内容の妥当性:研究内容は,新規性,進歩性,有用性,独創性のいずれかを持っていること。
- (c)情報収集能力:十分な文献や研究動向の調査を行い、自分の研究の意義や重要度と、他研究との関連性や相違を理解できること。
- (d) 問題分析能力:問題の分析に基づいた実験方法・解析手法や数学モデルの設定など,アプローチ方法は適切であること。
- (e) 研究遂行能力:実験,計算機シミュレーションや理論展開が適切に遂行できること。また, 実験・解析結果から新たな知見を見出すことができること。
- (f) 論文作成能力:
 - 1) 論文の体裁:表紙,要旨,目次,章立て,結論,参考文献などが整うこと。
 - 2) 論理性・構成: 論理が明晰に展開され、構成が体系立てられていること。
 - 3)表現・体裁:文献引用,図,表などの記述が適切に表示されていること。

上記の評価基準から、修士学位論文を以下の4段階で評価する。

A:優れた論文である。

B:おおむね良好な論文である。

C:修士論文としての水準に達している。

D:修士論文としての水準に達していない。

2. 最終試験の評価基準

公聴会において研究内容のプレゼンテーションと口述試問を行い,以下の基準により評価する。

- (a) 研究の内容について十分に理解しやすくプレゼンテーションできること。
- (b) 研究の将来的な展望について論述できること。
- (c) 関連する研究分野に関する基礎的な知識を有すること。
- (d) 修士論文の内容についての質問に正確に答えられること。

上記の基準から、最終試験を以下の4段階で評価する。

A:優れた研究が行われ、独力でさらなる研究の発展が期待できる。

B:おおむね良好な研究が行われたと認められる。

C:一定程度の研究が行われたと認められる。

D:適切な研究が行われたとは、いいがたい。

学位論文審査及び最終試験のいずれかまたは両者がDであれば、不合格とする。

機械システム工学専攻 授業科目及び単位数表 専門基盤科目

授業科目名		開講	期及で	 ブ週時	間数	教職		
		2 9	年度	3 0	年度	科目	担当教員	備考
		前期	後期	前期	前期 後期			
材料力学特論	2	2		(2)		エ	村澤, 久米	英語可
振動工学特論	2		2		(2)	エ	Langthjem, 井坂	英語可
流体力学特論	2	2		(2)		工	李鹿	英語可
工業熱力学特論	2		2		(2)	エ	赤松	英語可
制御工学特論	2	2		(2)	(2)		水戸部, 多田隈	英語可
機械運動論	2		2 (2)		工	南後	英語可	

専門科目

等门村日 	単	開講	期及で	ブ週 時	間数	+1. m+h		
授業科目名	位.		年度		年度	教職	担当教員	備考
	数	前期	後期	前期	後期	科目		
強度設計論*	2				(2)	工	近藤, 宮	英語可
生体構造力学*	2			(2)		エ	小沢田	英語可
数值弹塑性力学*	2	2				エ	黒田	英語可
材料強度学特論*	2		2			工	古川	英語可
材料システム学特論*	2			(2)		工	上原	英語可
伝熱工学特論*	2			(2)		工	赤松	英語可
エネルギー環境工学特論*	2			(2)		工	鹿野	英語可
計算流体力学特論*	2				(2)	工	中西	英語可
燃焼工学*	2	2				工	奥山 (正)	英語可
流体機械特論*	2				(2)	工	篠田	英語可
混相流特論*	2		2			工	幕田	英語可
機械設計論*	2		2			工	飯塚	英語可
ロボティクス特論*	2			(2)		工	妻木	英語可
システム工学特論*	2	2				工	秋山	英語可
CAD/CAM特論*	2	2				工	大町	英語可
計測制御特論*	2				(2)	工	峯田・西山	英語可
機械システム工学特別演習A	4	1	1	1	1	工	専攻教員	
機械システム工学特別実験A	6	2	2	4	4	工	専攻教員	
機械システム工学特別講義 I	1					工	非常勤講師	
機械システム工学特別講義Ⅱ	1					工	非常勤講師	
学外実習(インターンシップ)	2							
工学教育研修	2					工		
研究開発実践演習 (長期派遣型)	4							

- (注) 1. *印は,隔年開講とする。
 - 2. *印以外は、原則として毎年開講とし、()内の数字は30年度の開講予定週時間数を示す。
 - 3.「教職科目」欄の「工」は、教員免許教科「工業」の教科に関する科目を示す。
 - 4. 備考欄の「英語可」は、留学生の理解を助けるため、英語を併用した授業が可能な講義科目を示す。

機械システム工学専攻 授業科目の内容

機械システム工字専攻		
	専門基盤科目	
授業科目名	授業科目の内容	担当教員
材料力学特論 Advanced Mechanics of Materials	材料の変形挙動を正しく理解するため、力学的な基礎理論について講義するとともに、材料科学的な立場から材料のもつ力学的特性を解説する。力学理論としては、材料力学から連続体力学への展開、弾性力学・塑性力学の基礎、およびそれらの表現に必要な数学的基礎(テンソル解析、微積分)を講義し、材料特性としては、結晶構造、転位、粒界、すべり等、結晶性固体の変形メカニズムが理解できるように講義を行う。	准教授 村澤 剛 久米裕二
振動工学特論 Topics in Engineering Vibration	構造物の振動特性を解析するためには、その動特性を把握し、数学的にモデル化をしなければならない。学部の授業で学んだ一自由度から多自由度への問題解析をもとに連続体の振動解析へと発展させる。連続体の振動解析には、ハミルトンの原理を基にした系の運動方程式を求めることが必要である。構造要素としての弦、梁そして平板などの連続体に関する境界値問題の基礎方程式の導出法を説明し、固有値問題とその近似解法について述べる。	准教授 Langthjem, M.A. 助教 井 坂 秀 治
流体力学特論 Advanced Fluid Dynamics	乱流の基礎,流れ研究の最新進展並びに最先端の計測・解析技術について,次のような講義を行う。(1)乱流基礎理論(基礎方程式,乱流の遷移,乱流の統計理論,乱流の輸送現象,せん断乱流,乱流の組織構造など)(2)渦の動力学(3)流れ計測技術(4)流れ可視化情報処理	教授 李 鹿 輝
工業熱力学特論 Advanced Thermodynamics	熱機関の理論熱効率を考えたカルノーの論文をもとに熱力学の基礎を学ぶ。さらに、内燃機関の作動原理についてガソリンエンジンを中心に理解していく。具体的には、エンジンの仕事、平均有効圧力、トルクと出力、動力計、空燃比と燃空比、燃料消費率、エンジン効率、体積効率、排出ガス、騒音防止技術などのエンジンの基本から、Otto cycle、Diesel cycle、Dual cycle、Miller cycle など熱力学の基本サイクルの理解、さらにはターボと EGR、ハイブリッドエンジン、燃料電池エンジンなど最近の技術の紹介である。	教授 赤 松 正 人
制御工学特論 Advanced Control Engineering	機械システムの制御で用いられる線形および非線形制御理 論の基礎と設計法について講義する。状態フィードバック による極配置法,リアプノフの方法による安定性解析,ロ ボットを含む非線形動的システムの制御手法などを扱う。	教授 水戸部 和久 准教授 多田隈理一郎
機械運動論 Mechanism and Machine Theory	機械で出力される運動は構成部品を剛体と見なしたときの それらの相対運動の伝達により得られるものとして,各種 機械の設計を行うことになる。本講義では機械設計に必要 な剛体の力学の基礎を学ぶとともに複数の剛体が連結する ことで得られるリンク機構およびロボットの運動学を学習 する。	准教授 南後 淳

専門科目					
授業科目名	授業科目の内容	担当教員			
強度設計論	種々の負荷を受ける機械材料の非弾性変形、ぜい性破壊	教授			
Mechanics of Materials for	及び疲労破壊に対する強度設計ができるように、連続体	近藤康雄			
Mechanical Design	の力学、破壊力学及び材料科学の面から体系的に講義す	助教			
	る。機械材料としては金属材料と複合材料を取り上げ、	宮 瑾			
	強化メカニズムについて言及しながら論ずる。				
生体構造力学	生体の細胞、組織、臓器、個体各レベルの構造とその力	教授			
Biostructural Mechanics	学及び生理について論じる。また、これらについての低	小沢田 正			
	周波から超音波までの振動を利用した機械的な機能情報				
	の抽出,計測,評価についても講義する。				
数值弹塑性力学	非線形性を有する材料の変形解析についての講義を行	教授			
Computational Elasto-Plasticity	う。近年の目覚ましいコンピュータの発達によって,極	黒 田 充 紀			
	めて非線形性の大きい固体の変形挙動を詳細に解析する				
	ことが可能になりつつある。本講義では、弾塑性を代表				
	とする材料非線形性の数学的モデリングとその数値解析				
	(有限要素法他)への適用方法を中心に学ぶ。具体的な				
	理論として、古典的流れ理論及び各種降伏関数、コーナ				
1 1 Jol 3 C)	一理論、空隙損傷理論、結晶塑性論等を対象とする。	+11 l-=			
材料強度学特論	合金等の構造用材料に関して、組織と変形・破壊現象に	教授			
Advanced Strength and Fracture of Materials	関して、微視的並びに巨視的側面から総合的に論じる。	古川英光			
Fracture of Materials	温度や雰囲気、変形速度などの使用環境による変形構造				
	や強度特性の変化と強化法について工学的に重要なトピ				
	ックスを交えて解説する。また、ぜい性破壊の問題を扱				
	う上で必要となるき裂の力学の基礎について論じるとと				
	もに、き裂の力学の実際上の応用例について、工学的に				
社型ショニル労胜 会	重要なトピックスを交えて解説する。				
材料システム学特論 Advanced Materials System	機械・構造物を構成する材料の物理的・力学的特性を、	教授 上 原 拓 也			
Advanced Materials System	熱力学的な観点から講義する。特に、結晶構造の安定性、 転位や結晶粒界といった原子スケールの欠陥、およびミ	上			
	牧位や福甸社外といった原ナイケールの人間、およいさ クロスケールの微視組織について、材料内部のエネルギ				
	一状態に基づいて解説するとともに、マクロ特性との関				
	連について論じる。また、計算機シミュレーションを利				
	用した材料組織や特性の予測・評価法に関するトピック				
	も取り上げ、熱力学的基礎式の導出と計算事例を紹介す				
	る。				
	づ。 対流発生条件から Gr 数の物理的意味を説明し, 自然対流				
Advanced Heat Transfer	伝熱問題を解説する。また、管内強制対流熱伝達問題の	赤松正人			
	理論解析と実験整理式との関係を解説する。そのほか、	, <u>, , , , , , , , , , , , , , , , , , </u>			
	沸騰熱伝達特性について解説する。				
エネルギー環境工学特論	エネルギー資源の社会基盤を捉え、環境との関わりの中	准教授			
Environments on Energy	で、その役割とインパクトを掘り起こす、地球の誕生と	鹿野一郎			
- 55	熱史、地球と宇宙との熱授受からはじめて、無効エネル				
	ギーの有効化に至る方法を論ずる。				

授業科目名	授業科目の内容	担当教員
計算流体力学特論	計算流体力学の基礎と最新の進展について講義する。	准教授
Advanced Computational Fluid	①熱流体力学現象を支配する質量,運動量,エネルギー	中西為雄
Dynamics	保存の法則を計算機シミュレーションに適した形に纏め	
	上げる。②支配方程式に対する解析手法の基礎を講述す	
	る。偏微分方程式の分類と初期条件・境界条件,差分法	
	の基礎、プログラミング、計算結果の図形出力などの内	
	容を扱う。③格子生成技術、計算法の最新の進展、解析	
	システムの構築思想を論じる。④解析結果から現象の本	
140 14 24	質を抽出する発見的思考法を考える。	VV. #1. Lev
燃燒工学 Compution	反応系の熱力学に基づく有効エネルギー評価, 反応速度	准教授
Combustion	論、予混合火炎の理論など燃焼学の基本を論ずるととも	奥山正明
	に,レーザ計測を中心とする非定常現象の計測法など燃 焼計測に関する最新の話題について解説する。	
流体機械特論	様々な流体機械の中でも、圧縮機・燃焼器・タービンな	
Advanced Fluid Machinery	どで構成され、発電用や航空機用などによく利用される	篠田昌久
114 (41.1004 1 14.14 11.140111101)	ガスタービンを中心に採り上げて、原理、構造、性能、	
	用途、そして最近の研究開発動向などについて解説する。	
混相流特論	混相流とは、2種類以上の固体・液体・気体が混ざった	准教授
Advanced Multiphase	流れのことを指し、例えば、気泡を含む流れ(気・液)	幕田寿典
Flows	や土砂を含む流れ(固・液)等も一種の混相流である。	
	本講義では主に気液二相流を中心として混相流の基礎理	
	論および応用について解説する。	
機械設計論	機械設計の理念及び原理について講義し、機械設計を体	教授
Principles of Mechanical	系的に概観する。特に、構造部材や機能材料の最適材料	飯塚博
Design	選定に関する論理的な考え方を具体的な事例に基づいて	
	講義し、構造設計と材料設計について体系的に論ずる。	lit I m
ロボティクス特論	計算機により制御されるロボットマニピュレータのシス	教授
Advanced Robotics	テム・解析・制御と関係するロボット基礎技術を講義す	妻 木 勇 一
	る。主として、ロボットの機構と運動学、静力学及び動力学理論を取り上げ解説する。	
 システム工学特論	別子垤繭を取り上り解説する。 線形計画法,ネットワーク計画法,非線形計画法,組合	
Advanced Systems	世最適化について講義する。線形計画法では、単体法、	秋山孝夫
Engineering	2段階法、罰金法等を、ネットワーク計画法では、最短	
	絡問題、輸送問題等を、非線形計画法では、クーンタッ	
	カー条件、降下法等を、組合せ最適化では、整数計画問	
	題,資源配分問題等を扱う。	
CAD/CAM特論	設計知識を積極的に用いる知的CAD/CAMシステム	准教授
Advanced CAD/CAM	を主題として、機械設計・製作を支援する計算機援用技	大町竜哉
	術, 2次元及び3次元図形のモデリングと図形処理, 画	
	像処理、設計エキスパートシステム、設計知識の表現法	
	と問題解決システムについて講義する。	141.4
計測制御特論	高度な計測制御システムの構築には、信号の入力および	教授
Advanced Instrument and	出力素子における物理量と電気信号の変換の原理と特性の特殊などのできます。	峯 田 貴
Control System	の的確な理解が重要である。MEMS(マイクロ素子)	准教授
	からの視点を中心に、様々なセンサ、アクチュエータ、 およびこれらを応用した、ロボット、自動車、医療機器	西山宏昭
	およいこれらを心用した、ロホット、自動単、医療機器 等の計測制御システムについて講義する。	
	守い川側側岬ノハノムに JV' (講我りる。	

授業科目名	授業科目の内容	担当教員
機械システム工学特別演習A	修士論文を作成するために、参考書や参考論文を輪講演	専 攻 教 員
Advanced Exercise of	習し、論理的思考能力、コミュニケーション能力等を養	
Mechanical Systems	う。	
Engineering A		
機械システム工学特別実験 A	修士論文を作成するために、実験や数値シミュレーショ	専 攻 教 員
Advanced Experiment of	ンを主に指導教員の指導の下で行う。	
Mechanical Systems		
Engineering A		
機械システム工学特別講義Ⅰ	国内外で活躍しているすぐれた研究者や技術者を講師	非常勤講師
Special Lecture on	に迎え,最先端の研究や技術の講義を受ける。	
Mechanical Systems		
Engineering I		
機械システム工学特別講義Ⅱ	国内外で活躍しているすぐれた研究者や技術者を講師	非常勤講師
Special Lecture on	に迎え,最先端の研究や技術の講義を受ける。	
Mechanical Systems		
Engineering II		
学外実習	企業などにおいて、自らの専攻や将来の経験に関連した	
(インターンシップ)	就業体験を行う。大学教育とは異なる,高い職業意識と	
Internship	自立心・責任感のある社会人となるための育成を目的と	
	した実習である。業界や業種等に関する事前の調査、実	
	習、事後の実習報告などにより職業意識の向上を図る。	
工学教育研修	担当教員の指導を受けながら, 学部の製図・実験・実習・	専 攻 教 員
Engineering Education	演習などの実務教育研修を行う。教えることは学ぶこと	,
Training	である。工学教育の在り方・指導の在り方を実地に学ぶ。	
	11. 20 1 2011 1 m > 20 1 m > 20 2 2 2 2 1 m > 20	
研究開発実践演習	企業現場において、当該企業の協力を得ながら、企業分	
(長期派遣型)	析・産業分析を行い、課題発見と改善提案を行う。また、	
Practice for Research and	企業研究者と共同で開発研究活動を行う。	
Development		

ものづくり技術経営学専攻(MOT) 教育目標とカリキュラム

ものづくり技術経営学専攻の学習・教育日標

専攻のミッション

国内外の経済・社会環境の変化とグローバル化の進展によって、厳しい経営を強いられている企業も多い。他方でグローバル化によって販路や商機は世界中に広がっている。市場、政策、

る企業も多い。他方でグローバル化によって販路や商機は世界中に広かっている。市場、政策、顧客嗜好、産業構造などの変化に柔軟かつ迅速に対応し、これまでの技術価値や地域資源を「顧客価値」へと転換することで利益創出を行う「改革」が、いま正に求められている。このような環境において、ビジネスで高い収益性をあげるためには、イノベーションを定常的に生み出す文化・体制を組織内に構築しなければならない。さらに企業や地域社会を支える企業経営者や従業員らのグローバル能力の形成と、グローバル展開に備えたインフラ整備の推進が欠かせない。これらを担う人材の育成と支援システムの構築を通じて日本企業の発展を支え、地域・地方の経済・社会の活性化と繁栄に貢献することを本専攻のミッションとする。

◆ 専攻のビジョン

理論習得と実践力の養成に主眼を置き、「自らが考えて、手足を動かし、学ぶ」教育を実施する。また高度な分析力と先見性をもってプランを作成し、商品化・事業化を通じて新たな価値創造ができ、実際にこれらを主体的かつ中心的に担える実践力と行動力を身につけさせる。 博士後期課程では、これらの知識と能力を基盤として、自立的に国際レベルでの学術研究が展開でき、かつ指導力と教育力のある人材育成を目指す。

- (1) これまで培った山形大学の「産官学金」連携活動に基づく実践的な技術経営学。(2) グローバル展開にも適合した経営戦略論ならびにマーケティング論。

- (3) 既成概念に捉われない新しい生産管理・生産効率の手法。 (4) 社会人に学びやすい土曜日開講(一部,平日開講)と e-learning による教育環境整備。 (5) 日本人と留学生のハイブリッド型教育によるグローバル能力育成。

〇 修了要件

実践的な応用力を重視する観点から、一定の単位を修得(30単位、とうほく MITRAI コース は40単位)したうえで、次の要件を満たしたものを修了と認定する。

・修士論文の専攻による合格判定

ただし、以下に示す著しく優れた成果をもって修了と認定する場合がある。その場合は、根拠を示す資料を提出する必要がある。

- 1. 申請者の主導で新たな商品を開発し、修了までに商用化 2. 申請者の主導で新規事業開発、もしくは事業革新(ビジネスモデル構築等を含む)が進められ、新たな事業収益を獲得
- 3. 申請者の主導で競争型公募による産業支援型助成金(但し1000万円以上)獲得4. 申請者の主導で事業展開が確実に期待できる有用な特許を出願し、特許権登録

学位論文審査基準

- 1. 山形大学大学院理工学研究科(工学系)ディプロマ・ポリシーに従い、学位論文として適切な 形式を踏まえていること。
- 2. 修士学位論文は、新規性または独創性があって ものづくり技術経営学に関連する分野における 新しい知見をもたらすか、または当該分野における研究遂行に必要な基礎知識・理解力・問題 解決能力等を証明する、独自の考察を含んだ論文であること。
- 3. 論文の構成について
- (1)論文の題目が適切であること。 (2)研究の背景が記述され、研究目的が明確であること。
- (2) 研究の質量が記述されて、研究目的が明確であること。 (3) 研究方法が記述されており、目的に沿った方法であること。 (4) 結果が図表等を用いて適切に示されていること。 (5) 考察が結果に基づいて適切に導き出されていること。 (6) 目的に対応して結論が適切に導き出されていること。 (7) 引用文献が適切に用いられていること。

- 4. 提出された学位論文は審査委員(主査, 副査)によって審査されること。
- 5. 審査基準1から4までのすべてを満たしたものを合格とする。

ものづくり技術経営学専攻(MOT専攻) 授業科目及び単位数表

		開	講期及で	ブ週時間	数	> 1t-			
授業科目名	単位	2 9	年度	3 0	年度	必修・	選択の別	担当教員	備考
汉未行日石	· 位 数	前期	後期	前期	後期	価値創成	とうほく MITRAI	担当教員	E-C HIM
商品企画・開発論	2	2		(2)				野田,非常勤講師	
技術経営学概論A	2	2		(2)		0	0	兒玉,田中,野田,高澤	英語可
技術経営学概論B	2		2		(2)	0	0	兒玉,小野,田中,柊, 他分野教員	英語可
原価計算論	2	2		(2)				柊	
マーケティング・戦略論 I *	1	1						兒玉, 非常勤講師	遠隔授業の可能性 あり
マーケティング・戦略論Ⅱ *	1	1						兒玉, 非常勤講師	遠隔授業の可能性 あり
組織・人的資源管理特論	1	1		(1)				小野	
地域活性特論	2	2						小野,高澤	
食品ビジネス特論*	2			2				野田	英語可
地域資源開発特論	2		2		(2)			野田	
地域資源ビジネス特論	2		2		(2)			高澤	英語可
知的財産マネジメント	2		2		(2)			小野,他分野教員, 非常勤講師	
グローバル戦略マネジメント	2		2		(2)			兒玉, 非常勤講師	英語可
国際取引マネジメント論	2		2		(2)			小野, コーエンズ 非常勤講師	
技術マネジメント特論 A (国際経営系)	2		2		(2)			小野	英語可
技術マネジメント特論B(設計系)	2	2		(2)				横山	
技術マネジメント特論C(品質系)	2	2		(2)				杉本 (俊)	
技術マネジメント特論D(情報系)	2		2		(2)			田中	英語可
技術マネジメント特論E(技術経営系)	1							兒玉, 柊, 専攻教員	読替科目 英語可
技術マネジメント特論 F (技術経営系)	1							専攻教員	読替科目
技術マネジメント特論 G (技術経営系)	2							兒玉, 柊, 松田圭悟, 専攻教員	読替科目 英語可

			開講期及	び週時間	数	21.66	Market to the			
	単	2 9	年度	3 0	年度	必修・	選択の別		備考	
授業科目名	単位数	前期	後期	前期	後期	価値創成	とうほく MITRAI	担当教員		
技術マネジメント特論H(技術経営系)	1							専攻教員	読替科目	
技術マネジメント特論 I (金融分析)	2							小野,専攻教員	読替科目	
技術マネジメント特論 J (技術経営系)	1							専攻教員	読替科目	
技術マネジメント特論K(技術経営系)	1							専攻教員	読替科目	
TT 070 20 14 11 11 12 12 757	6	1	1	-	-	0		【価値創成】 専攻教員	履修登録は	
研究論文特別演習	ь	1	1	5	5		0	【とうほくMITRAI】 専攻教員	大学院修了 年次に行う	
研究開発実践演習(長期派遣型)	4								全専攻共通	

(注)

- 1. MOT 専攻は、各学期15週の開講を標準とする。
- 2. ◎印:必修科目 無印:選択科目
- 3. *印は、隔年開講とする。
- 4. () 内の数字は30年度の開講予定週時間数を示す。

【とうほくMITRAIコース】

		開	講期及	び週時間	数				
授業科目名	単位数		F次 年度		E次 年度	必修・選択の別		担当教員	備考
	奴	前期	後期	前期	後期	価値創成	とうほく MITRAI		
ビジネス日本語 I	2		4		(4)		0	仁科,非常勤講師	I またはIVのどちらかを 必ず単位修得
ビジネス日本語Ⅱ	2	4		(4)			0	仁科	
ビジネス日本語Ⅲ	2		4		(4)		0	仁科	
ビジネス日本語IV	2	4		(4)			0	仁科,非常勤講師	IまたはⅣのどちらかを 必ず単位取得
日本ビジネス	2		2		(2)		0	野田,他分野教員	
学外実習 (インターンシップ)	2		4		(4)		0	野田,高澤,他分野教員	
キャリア開発	2	2	2	(2)	(2)		0	野田,高澤,非常勤講師	

(注)

- 1. ◎印:必修科目 ○印:選択科目
- 2. () 内の数字は30年度の開講予定週時間数を示す。

ものづくり技術経営学専攻 授業科目の内容

ものづくり技術経営子等場合		扣 水 补 旨
授業科目名	授業科目の内容	担当教員
商品企画·開発論 Product Planning and Development	顧客価値・商品企画開発について講義する。システマティックな具体的方法論(市場調査,アイデア創造,最適商品決定)について事例研究(グループで実際にテーマを決め商品を企画)を行いながら活用できる形に論じる。加えてQFD(品質機能展開)に基本的事項についても解説する。	教授 野 田 博 行 非常勤講師
技術経営学概論A Introduction to Management of Technology A	ものづくり技術経営学の基本となる考え方を習得する。本専攻の全体を俯瞰し講義体系がわかる構成となっている。具体的には、MOTの本質を戦略、サービスを含めたエコシステムとバリューチューン、技術マーケティング、アーキテクチャーとプラットフォーム、イノベーションの理論と本質、研究戦略、コア技術戦略、事業システムと設計・デザイン・プロセスのマネジメント、組織能力とプロセスマネジメントについて学ぶ。概論はA、Bどちらから始めても良いが、両方を受講することが必修である。	教兒田准野助高授 玉中教田教 田本教 田教 澤 博 由 由 樹郎 行 美
技術経営学概論 B Introduction to Management of Technology B	ものづくり技術経営学を学ぶうえで必要となる基本的な知識を習得する。具体的には、MOTの本質と戦略、アカウンティング・ファイナンス、知的所有権入門、学術論文の基礎について学ぶ。概論はA、Bどちらから始めても良いが、両方を受講することが必修である。	教兒 小 田 准 教
原価計算論 Cost Management	原価計算は企業の合理的な経済活動に必要不可欠である。マネジメント・コントロールとしての原価管理の意義を理解した上で、経営情報システムのサブシステムとしての原価計算のしくみを学び、なぜそのような計算が必要かについての理解と、基礎的な計算方法の習得を目指す。日本の原価計算基準、簿記ルールに則って講義する。	准教授 柊 紫 乃
マーケティング・戦略論 I Marketing and Business Strategy I	マーケティング、それによるマーケティング戦略、それを持続的収益に繋げる事業戦略について学ぶ。マーケティング・戦略論 I では、まず、事業や商品に対し自社の強みを生かせる標的顧客を定め、その顧客に向けた価値を創る手法を解説する。商品の機能と顧客が受け取るベネフィットとの違いを理解し、商品力の原点である、顧客から見た明確な魅力を創り出す、あるいは磨きあげる魅力的な商品の企画法を習得する。	教授
マーケティング・戦略論 II Marketing and Business Strategy II	マーケティング、それによるマーケティング戦略、それを持続的収益に繋げる事業戦略について学ぶ。マーケティング・戦略論 II では、マーケティングを踏まえたうえで、持続的収益を獲得するための、競争優位性と参入障壁の作り方を解説する。自社は、何に焦点を絞って集中し、競争優位性を高めていくべきかを理解し、顧客から選ばれる理由をつくり、競争に勝ち続け、高収益をもたらすシナリオづくりの手法を学ぶ。履修条件:マーケティング戦略論 I を履修したもの	教授 兒 玉 直 樹 非常勤講師

授業科目名	授業科目の内容	担当教員
組織・人的資源管理特論 Organization and Human Resource Management	組織デザインとマネジメント、ならびに人的資源開発の観点から、リーダーシップのあり方とコミュニケーション、MBO (Management by Objectives) と自立型人材の育成、および組織活力を向上させる施策について、ケースメソッドを活用して学ぶ。	教授 小 野 浩 幸
地域活性特論 Regional Industry Promotion	地域産業活性化のロジック,地域産業の分析手法,地域企業の分析手法を基礎とし,活性化策,支援組織,支援手法のあり方について学ぶ。そして,地域内外の需要と経営資源に着目し,地域に活力をもたらす方法論,そのための仕組み作りを体系的に学ぶ。	教授 小野浩幸 助教 高澤由美
食品ビジネス特論 Food Business Management	地域食材等を活用した加工食品の開発において, 味, 香り, 機能性成分の貯蔵・加工工程における変化について, 科学的根拠が必要であることを理解する。また, 味覚センサー測定による味の違いの数値化を実践し, 加工食品製造における注意点について学ぶ。	准教授 野田博行
地域資源開発特論 Development of Local Resources	農林水産物,工芸品,鉱工業製品等の地域資源を活用した 地域活性化について事例から学ぶ。また,地域資源を活用 した体験型グリーンツーリズム等観光とのコラボレーションについて学ぶ。	准教授 野田博行
地域資源ビジネス特論 Regional Business	地域資源を活かした新たなビジネスや価値の創出についてフィールドワーク等の実践を行いながら学ぶ。ものづくりや食や農、観光などを含めた広義の地域資源の価値創出を念頭に置き、マーケティングやプロセスデザイン等、MOTの基礎知識を取り入れながら進める。地域が抱える人口減少、高齢化、後継者問題などの解決に地域ビジネスが寄与できる社会的な意義を含めて習得することを目指している。	助教 高 澤 由 美
知的財産マネジメント Management of Intellectual Property	技術経営における知的財産マネジメントについて、産業財産権の制度・判例を中心とした基礎知識と、MTマトリックスによる技術戦略分析など、理論と実践双方を幅広く身につけることを目指す。	教授 小 野 浩 幸 他分野教員 非常勤講師
グローバル戦略マネジメント Global Strategy Management	グローバル展開するに際し、バリューチェーン上の経営資源を世界的視野で最適配分することだという基礎的な考え方を理解する。戦略展開に関して、電子部品やICT関連製造業における過去の実例、現在進行形の新事業推進の実例を取り上げる。グローバル展開におけるリスクマネジメント例も取りあげる。英語によるコミュニケーションを含む。	教授
国際取引マネジメント論 Management for International Exchange	国際取引において最も典型的な売買契約に関する基礎的な法知識を修得した上で,契約書の作成方法について具体的に学ぶ。これらを踏まえ,実際のビジネス交渉を想定した事案におけるロールプレイイングに取り組むことにより,英文契約書の解釈,修得した知識の運用といった国際取引の実務感覚を培うことを目的とする。	教授 小 野 浩 幸 コーエンズ 久美子 非常勤講師

授業科目名	授業科目の内容	担当教員
技術マネジメント特論A (国際経営系) Technology Management A (International Management)	日本の製造業が抱えるグローバル経済における課題とその解決に向けた戦略展望についての基礎的理解を深める。各種資料や地域企業の海外展開先進実例分析をもとに、バリューチェーン全体を俯瞰した日本企業の国際競争力とグローバリゼーションの現代的意義について論じる。また、地域企業等の公表データによる事例分析を通して理解の深化と分析力の涵養を図る。	教授小野浩幸
技術マネジメント特論B (設計系) Technology Management B (Plan and System Design)	近年のデジタルシステムの設計開発には必須となってきている,アナログ高周波的設計手法と組込みシステムについて,海外勢に追従されない優位性を保つべき重要な技術である事を認識しつつ,その基礎から実習までを通して学習する。まず,高周波特有の設計・計測手法とシステムの高密度基板実装における高周波設計について,高周波基板設計・計測評価実習を交えながら概観する。また,組込みシステムを搭載した簡単な実習キットによる演習を通して,組込みシステム設計・開発の基礎を学び,開発の現場ではどのような手法で開発・設計され活用されているかを探る。	准教授横 山 道 央
技術マネジメント特論 C (品質系) Technology Management C (Quality control)	品質管理技術の中で品質工学(タグチメソッド)を取り上げ、その考え方を講義と実習で学ぶ。具体的には、損失関数を用いて品質を金銭に換算して評価する手法、パラメータ設計によって機能のばらつきを小さくする(品質を向上させる)方法について学ぶ。また、現場における品質測定の手法についても議論する。	准教授 杉 本 俊 之
技術マネジメント特論D (情報系) Technology Management D (Information Communication Technology)	ビッグデータが価値ある情報を生み出すプロセスとその情報処理を支えるICT (情報通信技術)の基礎を学ぶ。加えて、ICT及び電子工学を中心に技術研究開発マネジメントの概要及びイノベーションに繋げる開発戦略と具体的手法について、実践例を基に習得することを目指す。	教授田中陽一郎
技術マネジメント特論E (技術経営系) Technology Management E (MOT)	価値創成に欠かすことのできない日本型製造企業におけるマネジメントに関する知識と技術を学ぶ。ボリビア国費留学生は必修とする。(読み替え科目)	教授 兒 玉 直 樹 准教授 柊 紫 乃 専攻教員
技術マネジメント特論 F (技術経営系) Technology Management F (MOT)	価値創成に欠かすことのできないグローバル技術マネジ メントに関する知識と技術を学ぶ。(読み替え科目)	専攻教員
技術マネジメント特論G (技術経営系) Technology Management G (MOT)	価値創成に不可欠な技術マネジメント及びイノベーションに関する知識・技術・ノウハウを学ぶ。ボリビア国費留学生は必修とする。(読み替え科目)	教授 兒 玉 直 樹 准教授 柊 紫 乃 松 田 圭 悟 専攻教員

授業科目名	授業科目の内容	担当教員
技術マネジメント特論H (技術経営系) Technology Management H (MOT)	価値創成に不可欠な技術マネジメント及びイノベーションに関する知識・技術・ノウハウを学ぶ。(読み替え科目)	専攻教員
技術マネジメント特論 I (金融分析) Technology Management I (Financial Analysis)	財務情報に加えて、財務指標が経営及び業務の実態の何を 映し出していけるかを分析する手法を学ぶ。日本の金融機 関における企業分析は、これまで財務指標と言われる過去 の数値をもとに行われていたが、現在は事業の将来性を見 通した事業性評価を加味したものが求められ、一部で実践 されている。この手法を掘り下げ、金融機関が取り組んで いる事業目利き手法を学ぶ。(読み替え科目)	教授 小 野 浩 幸 専攻教員
技術マネジメント特論 J (技術経営系) Technology Management J (MOT)	価値創成に不可欠な技術マネジメント及びイノベーションに関する知識・技術・ノウハウを学ぶ。(読み替え科目)	専攻教員
技術マネジメント特論 K (技術経営系) Management of Technology K (MOT)	価値創成に不可欠な技術マネジメント及びイノベーションに関する知識・技術・ノウハウを学ぶ。(読み替え科目)	専攻教員
研究論文特別演習 Special Exercise for Research and Thesis	【価値創成コース】 新商品の開発や新たなビジネスの創成等の学生一人一人が持ち込んできた研究課題について教員と学生との間でキャッチボールを行いながら探求を行い、研究論文の完成を目指す。 【とうほくMITRAIコース】 学生が持つ個別の研究テーマに則して専門教員が指導・教育を行うとともに、論文の書き方について専攻教員が指導を行う。また日本語の指導が必要な学生に対しては語学専門教員を配置し、研究論文の完成を目指す。	専攻教員
研究開発実践演習 (長期派遣型) Practice for Research and Development	企業現場において、当該企業の協力を得ながら、企業分析・産業分析を行い、課題発見と改善提案を行う。また、企業研究者と共同で開発研究活動を行う。	

授業科目名	授業科目の内容	担当教員
ビジネス日本語 I Business Japanese I	「キャリア」に関する基礎知識を学び、自己のキャリアプランを考える。また、ビジネス場面における敬語・待遇表現、及び、ビジネスライティングの基礎的内容の習得を目指す。	准教授 仁 科 浩 美 非常勤講師
ビジネス日本語Ⅱ Business Japanese Ⅱ	現代日本社会を作りあげてきた日本の歴史について学ぶとともに、日本社会で働くために必要な社会制度、慣習、社会問題について主体的に学習する。また、e-learning教材等を用い、日本の企業人の職業意識も学ぶ。	准教授 仁 科 浩 美
ビジネス日本語III Business Japanese III	日本での就職に関する知識を得るとともに,自己を語る表現や要約のスキル等を「話す」「書く」の活動を通して学び,実践力の養成を目指す。	准教授 仁 科 浩 美
ビジネス日本語IV Business Japanese IV	ビジネス日本語能力テストのJ1相当のレベルを目指し、 様々な対人関係やビジネス場面を意識した日本語表現・ストラテジーとその運用能力を養成する。	准教授 仁 科 浩 美 非常勤講師
日本ビジネス Japan Business	グローバル経済が急拡大するなかでの、これからの日本企業の在り方や経営戦略を学ぶとともに、ものづくりに対する考え方や、日本型経営の特徴について学ぶ。	准教授 野 田 博 行 他分野教員
学外実習 (インターンシップ) Internship	企業などにおいて、自らの専攻や将来の経験に関連した就業体験を行う。大学教育とは異なる、高い職業意識と自立心・責任感のある社会人となるための育成を目的とした実習である。業界や業種等に関する事前の調査、実習、事後の実習報告などにより職業意識の向上を図る。	准教授 野 田 博 行 助教 高 澤 由 美 他分野教員
キャリア開発 Career Development	大学院修了後を見据えて就職活動を行うことを支援する。 自己分析を行った上で具体的な企業研究を行い、効果的な ES・自己 PR・履歴書の書き方を学ぶ。また面接や SPI の対策も行う。ビジネスマナーについても個別性に応じて 指導する。	准教授 野 田 博 行 助教 高 澤 由 美 非常勤講師

各専攻共通開講科目

各専攻共通 授業科目及び単位数

授業科目名		開講期及び週時間数			間数	本作中小		
		2 9	年度	3 0	年度	教職 科目	担当教員	備考
	位数	前期	後期	前期	後期			
数学特論 I	2		2		(2)	工	小島	
数学特論Ⅱ	2					工		
数学特論Ⅲ	2	2		(2)		工	早田	
物理工学特論 I	2		2		(2)	エ	加藤	
物理工学特論Ⅱ	2	2		(2)		エ	安達	
物理工学特論Ⅲ	2		2		(2)	工	小池	
数理工学特論 I	2		2		(2)	工	大槻	
数理工学特論Ⅱ	2					情		

- (注) 1. 30年度の「開講期及び週時間数」は、原則として29年度に倣うものとする。
 - 2. () 内の数字は30年度の開講予定週時間数を示す。
 - 3.「教職科目 (コース)」欄の「情」は教員免許教科「情報」,「工」は「工業」のそれぞれの教科に関する科目を示す。

各専攻共通 授業科目の内容

授業科目名	授業科目の内容	担当教員
数学特論I	数理物理学に現れる対称性とその応用について学ぶ。統計	教授
Advanced Mathematics I	力学の模型である2次元イジング模型は相転移現象を記	小島武夫
	述する模型であり、工学者にも良く知られる、最も基本的	
	かつ重要な可解模型である。このイジング模型を厳密に解	
	くことをとおして、離散フーリエ解析、転送行列、クリフ	
	オード代数などの数学的道具を理解する。具体的には、ク	
	リフォード代数という対称性を用いることで, 巨大なサイ	
	ズの行列の対角化を厳密に行う。無限自由度の模型を無限	
	の対称性により解く方法の雛形となる理論を学ぶことで、	
	現代数学とその具体的応用についての理解を深める。	
数学特論Ⅲ	格子上球充填問題と関連するボロノイ理論を解説する。正	准教授
Advanced Mathematics III	定値対称行列全体のなす対称錐のなかのリシュコフ多角	早田孝博
	形の頂点を利用して最適格子を特徴付けるボロノイの定	
	理を学ぶ。これはコンピュータによる探索のためのボロノ	
	イアルゴリズムの根拠となる。	
物理工学特論 I	電気双極子,磁気双極子をもつ固体の電気的・磁気的性質,	教授
Advanced Physics I	外場に対する応答,双極子の協力現象と相転移,強誘電体・	加藤宏朗
-	強磁性体に代表される双極子の長距離秩序状態について	
	述べる。特に電子のスピンについては、その起源、合成、	
	秩序等詳しく解説する。	
物理工学特論Ⅱ	「量子力学」の基本的な概念を説明し、量子力学特有の演	准教授
Advanced Physics II	算,シュレディンガー方程式とその解法,演算子や行列表	安達義也
-	現などを紹介し簡単な事象について計算する。磁気モーメ	
	ントの根源である角運動量(軌道およびスピン)について	
	解説する。	
物理工学特論Ⅲ	現代の物理工学において対象となる基礎的な固体の磁気	准教授
Advanced Physics III	現象について論ずる。さらに多彩な物理的振舞いを示す磁	小 池 邦 博
	性体の性質とそれを応用した最近の磁性材料の展開につ	
	いて解説する。	
数理工学特論 I	相互に関連のある多種類のデータから特徴を把握するた	准教授
Advanced Mathematical	めの手法、いわゆる多変量解析法について、重回帰分析・	大槻恭士
Theory I	主成分分析などの基本的な手法を解説する。	
数理工学特論Ⅱ	生体の神経や脳の情報処理機構について述べ、これらの情	
Advanced Mathematical	報処理機構の原理を抽出するための脳の理論モデルにつ	
Theory II	いて体系的に講義する。さらに、学習、記憶、連想などの	
	諸機能の神経回路モデルによる実現とそれらを用いた工	
	学的応用及び問題点などについて論じる。	
	学的応用及び問題点などについて論じる。	

Ⅱ 博士後期課程

1. 履修方法

1-1指導教員グループ

学生には、入学の際、授業科目の履修、学位論文の作成等の指導のために、博士後期課程担当 教員の中から主指導教員が定められる。主指導教員は、学生の研究計画に基づき、専門分野が偏 らないように配慮し、3名以上の指導教員グループを組織する。

1-2 授業科目等

授業科目は、講義科目、特別演習B、研究計画、特別計画研究、特別教育研修及び特別実験Bである。(ものづくり技術経営学専攻(MOT専攻)は「地域技術ビジョン演習B」)である。

(1) 講義科目

研究を遂行し発展させるための専門的知識と能力を,高度かつ総合的に涵養するために,関連する専門分野の講義科目に偏ることなく履修する。

(2) 特別演習 B

専門分野関係の研究グループ内で、最新の文献の輪講などを、1年間を通じて行う演習科目である。合格、不合格の判定は、主指導教員が行う。

(3) 研究計画 (プロポーザル) …… (提出様式1)

授業科目の修得が進んだ段階で、専門分野の社会的ニーズに関して予備的実験や計算を行い、関連する国内、国外の研究状況についての調査・検討を踏まえて、それを将来性のある独創的な研究課題として提案する科目である。研究の目的、手段、期待される成果などを口頭で発表し、指導教員グループの審査を受ける。合格、不合格の判定は、主指導教員が行う。

(4) 特別計画研究……(提出様式2)

工学に対する視野を広め、問題提起・解決能力を養うために、産業の現場、各種研究施設又は他専門分野の研究室において、専門以外の領域の開発や生産などの実習及び情報収集に携わる実習科目である。

学生は、実習からの課題と調査・検討結果を報告書にまとめ、発表する。成績の評価は、主 指導教員が依頼した受入責任者が行う。

(5) 特別教育研修……(提出様式3及び4)

知識及び技術の教授法を研修すると同時に、共同作業における指導力を養うための実習科目であり、次の三つの中から選択する。

- ① 学部学生や博士前期課程(修士課程)学生の実験又は演習の指導
- ② 学部学生や博士前期課程(修士課程)学生の学術講演会,シンポジウム等における原稿作成と発表技術の指導
- ③ 企業等の生産・開発担当者に対する研究・技術指導 ただし、①の実験又は演習は1学期分程度とする。②及び③の指導も同程度の時間数とする。 合格、不合格の判定は、主指導教員が行う。

(6) 特別実験B(ものづくり技術経営学専攻(MOT専攻)は「地域技術ビジョン演習B」) 学位論文に関して所属専攻で行う実験である。数値シミュレーション,理論的思考実験など も含まれる。ものづくり技術経営学専攻(MOT専攻)の「地域技術ビジョン演習B」は、学 位論文に関して行う調査、研究、実験科目である。成績の評価は、主指導教員が行う。

(7) 外国語論文

外国語(特に英語)に関する力を十分に身に付け、国際社会で活躍できる人材を養成するための科目である。学生は、積極的に外国語論文の執筆・投稿又は国際会議における口頭発表を行うことが望ましい。

(8) 論文計画

学位論文を執筆しようとする者は、研究の目的、手法の独創性と成果の有用性並びに論文構成と内容公開の計画について、論文計画として、指導教員グループを含んで構成される論文計画審査委員の審査を受けなければならない。

* 「特別計画研究」及び「特別教育研修」について、入学以前に企業等で積んだ経験の読替を希望する場合には、科目履修認定申請書(様式5)により申請すること。ただし、科目履修認定申請書を提出した場合であっても、「特別計画研究審査報告書(様式2)」及び「特別教育研修終了報告書(様式4)」の提出は必要である。

1-3 履修届

- (1) 学生は、学期始めに履修科目について主指導教員と相談の上、授業科目を決定すること。
- (2) 履修科目一覧に履修授業科目を記入し主指導教員の承認を得た上で、所定の期間内に教育支援担当に提出すること。なお記入する際は、事前に各授業担当教員に受講の許可を得ること。
- (3) 履修申告をした授業科目以外の科目は履修できないことがあるので、十分注意すること。また、履修する科目が実習、演習及び実験科目だけであっても申告すること。

1-4 成績の審査及び単位の基準

博士前期課程の場合に準ずる。

1-5 履修基準

- (1) 修了に必要な最低修得単位数は、特別計画研究2単位、特別実験B4単位(ものづくり技術経営学専攻(MOT専攻)は「地域技術ビジョン演習B」4単位))、講義科目6単位の合計12単位である。
- (2) 特別演習B, 研究計画及び特別教育研修は, 単位なしの必修科目である。

博士後期課程履修基準表(バイオ工学・電子情報工学・機械システム工学)

授業科目区分	単 位 数
講義科目	6 単位以上
特 別 演 習 B	*
研 究 計 画	*
特別計画研究	2 単 位
特別教育研修	*
特 別 実 験 B	4 単 位

*印の科目は、単位なし (必修科目)である。

博士後期課程履修基準表 (物質化学工学)

	授業科目区分		単 位 数
講	義科	目	6 単位以上**
特	別 演 習	В	*
研	究 計	画	*
特	別計画研	究	2 単 位
特	別教育研	修	*
特	別実験	В	4 単 位

*印の科目は,単位なし (必修科目)である。

博士後期課程履修基準表(ものづくり技術経営学)

授業科目区分	単 位 数
講義科目	6 単位以上
特 別 演 習 B	*
研 宪 計 画	*
特別計画研究	2 単 位
特別教育研修	*
地域技術ビジョン演習B	4 単 位

*印の科目は,単位なし (必修科目)である。

1-6 博士論文の審査及び最終試験

履修基準の授業科目を修得する見込みがつき、必要な研究指導を受けた学生は、論文計画の審査に合格した後に、博士論文を作成し、審査申請することができる。

提出された論文は、研究科委員会が選出する論文審査委員により審査される。

博士後期課程の学位論文審査基準は以下のとおりである。

大学院理工学研究科博士後期課程学位論文審查基準

- (a) 研究テーマに新規性・独自性があること。
- (b) 自ら研究を計画・遂行するための専門的知識を基に、研究背景・目的が正しく述べられていること。
- (c) 学位論文の構成が適切で、体裁が整っていること。

[※] 講義科目(専門基礎科目,専門応用科目)の修得においては,専門基礎科目の中から専門とする分野(有機化学,無機化学,電気化学,分析化学,化学工学のいずれか)の科目を2単位以上と専門以外の分野の科目2単位以上修得し,専門応用科目からは専門とする分野の科目を2単位以上修得すること。

(d) 学位論文の記述が論理的で、設定した研究テーマに沿った明確な結論が述べられていること。

最終試験は、論文提出者が、各専攻開催の公聴会において、学位論文の内容を発表する際に、 関連する事項に対して論文審査委員が口頭又は筆答で試問を行う形で実施される。

1-7 修了要件

- (1) 博士後期課程の修了の要件は、大学院に3年以上在学し、履修基準表の12単位以上を修得し、かつ、必要な研究指導を受けた上、博士論文の審査及び最終試験に合格することである。
- (2) 在学期間に関しては、特に優れた研究業績を上げた者は、博士前期課程(修士課程)、博士後期課程を通算して、3年以上在学すれば足りるものとする。

なお、修士の学位を有する者と同等以上の学力があると認められて入学した者の在学期間に関 しては、特に優れた研究業績を上げた者については、1年以上在学すれば足りるものとする。

ただし、「1年」とあるのは「博士後期課程の標準修業年限3年から修士課程又は博士前期課程における在学期間を減じた期間」と読み替えるものとする。

1-8 学位の授与

理工学研究科博士後期課程を修了した者は、博士(工学若しくは学術)の学位が授与される(後掲「山形大学学位規則」別表参照)。

1-9 社会人受入れのための教育方法の特例措置について

本研究科(工学系)では、社会人受入れに当たり、教育上特に必要と認められる場合には、大学院設置基準第14条に定める教育方法の特例措置を適用し、次の方法で履修できるものとする。

- (1) 通常の時間帯 (8 時 50 分から 15 時 55 分) 以外に, 夜間の時間帯 (16 時から 21 時 10 分) に 授業及び研究指導を受けることができるものとする。
- (2) 土曜・日曜日も授業及び研究指導を受けることができるものとする。
- (3) 必要に応じて夏季・冬季休業期間中も授業及び研究指導を受けることができるものとする。
- (4) 特例の時間帯,時期による授業及び研究指導を受けることを希望する者は,当該年度当初に 教育方法の特例適用申請書を提出し,主指導教員の承認を得た上,授業担当教員の許可を得る ものとする。

博士後期課程の履修モデル

	1年次	2年次	3年次
講義	講 義 科 (6単位以上)		
実習	特別計画研究 (2単位,必修) 特別教育研修 (単位なし,必修)	外国語論文	
演習・実験	特別演習B (単位なし,必修) 特別実験B (4単位,必修)		
研究	論文執筆	投稿・学会発表・研究語 研究計画 [プロポーザル] (単位なし,必修)	計画 学位論文作成 学位論文審查 学位論文公聴会 最終試験

【様式1】

年 月 日

研究計画審查報告書

研究課題

平成 年度入学理工学研究科博士後期課程

学生番号

専攻

氏名

		審査年月日	年	月	日	
		主指導教員			()
		副指導教員)
評 価		副指導教員)
(合格,不合格の	評語で表す。)	副指導教員			()

年 月 日

特別計画研究審查報告書

研究課題

平成 年度入学理工学研究科博士後期課程

専攻

学生番号	氏名

発表年月日 年 月 日

評 価 主指導教員 印

(09以降の学生:S, A, B, Cの標語で表す)

年 月 日

特別教育研修申請書

理工学研究科長 殿

標記のことについて、下記の方法での履修を申請します。

学生番号	専 攻 名	氏 名

*各自が選択するものに○をつけること。

① 学部学生又は博士前期課程学生の実験又は演習の指導

科	目	名	開講年次	開講曜日	開講時間帯
				曜日	~ 校時

- ② 学部学生又は博士前期課程学生の学術講演会、シンポジウム等における原稿作成と発表技術の指導
- ③ 企業等の生産・開発担当者等に対する研究・技術指導

主指導教員		
		(

評 価

(合格,不合格の評語で表す。)

年 月 日

特別教育研修修了報告書

理工学研究科長 殿

標記のことについて,下記のとおり修了したことを報告します。

学 生	番号		専	Ŗ	女	名			氏	名
場	所		ļ	朝		間	j		時	間
		年	月	日	~	年	月	日		~
〈研修内	容〉									

— 85 —

主指導教員

年 月 日

科目履修認定申請書

理工学研究科長 殿

標記のことについて,下記のとおり申請します。

学生番号	専 攻 名	氏 名

〈申請事項〉

対象科目名	対	象	と	な	る	職	務	経	験

*	対応す	る.	具体的	な研究	•	開発歴も	記入	す	ろ	$\overline{}$	上。	

主指導教員	
	<u> </u>

2. 学位論文審査の手引

履修基準の授業科目を修得する見込みがつき、必要な研究指導を受けた学生は、論文計画の審査に合格した後に、博士学位論文を作成し、所定の手続を経て審査申請することができる。提出された論文は、理工学研究科学位審査細則に従って審査される。学位論文審査の流れは、2-4の図に示すとおりである。

2-1 論文計画の提出

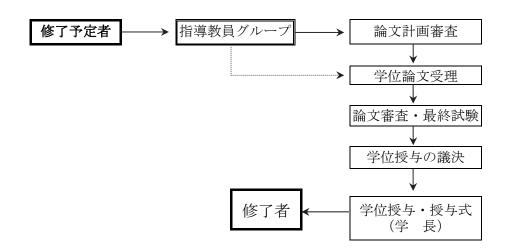
「論文計画審査申請書」「論文計画内容」「内容公開」(各々所定の様式)を作成し、主指導教員に提出する。

論文計画の審査は指導教員グループが当たり、後期に学位論文を提出する場合(3月修了)は、前年の10月末日までに審査を実施する。また、前期に学位論文を提出する場合(9月修了)は、4月末日までに審査を実施する。

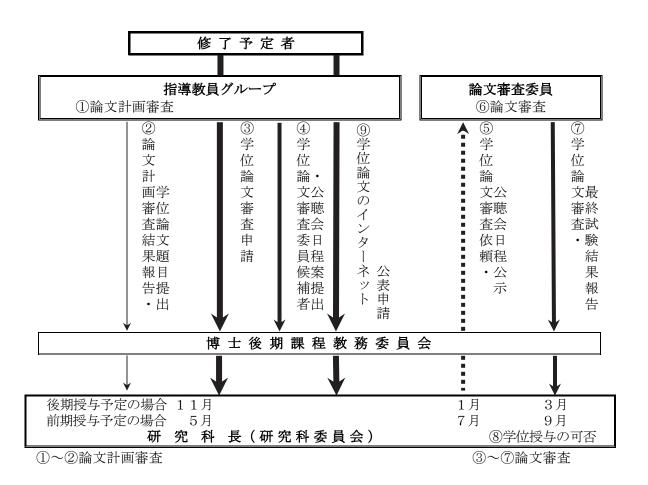
2-2 論文題目の提出

論文計画審査に合格した後、所定の様式に記入し、指導教員の承認を得て教育支援担当に提出する。

提出期限(休日の場合は、その前日又は前々日とする。)


- ① 後期提出(3月修了)の場合: 10月末日
- ② 前期提出(9月修了)の場合: 4月末日

2-3 学位論文の審査申請


「学位論文審査申請書」に学位論文等を添えて、指導教員グループの承認を得た後、教育支援 担当に提出する。学位論文は、2-5に示す「博士学位論文作成要領」をもとに作成する。

- (1) 学位論文の審査申請書類等,及び提出部数
- ① 学位論文審査申請書(所定の様式) ・・・・・・・・・・・・・・・・・・・・・・1部
- ② 学位論文(このほか審査に必要な部数を作成する) ・・・・・・・ 全文の電子データ
- ③ 論文目録(所定の様式)5部
- ④ 論文内容要旨(和文及び英文)(所定の様式) ……………… 各 5 部
- ⑥ 共著者の同意書(所定の様式) ・・・・・・・・・・・・・・・・・・ 各4部
- (2) 提出期限(休日の場合は、その前日又は前々日とする。)
 - ① 後期提出(3月修了)の場合: 12月20日
 - ② 前期提出 (9月修了) の場合: 7月 1日

2-4 博士学位論文審査から学位授与までの流れ・博士学位論文審査に関わる 手続の流れ

博士学位論文審査から学位授与までの流れ

2-5 博士学位論文作成要領

1 学位論文

- (1) 学位論文は、和文又は英文とする。
- (2) 目次をつけページを記入する。ページの位置は、下部中央とする。
- (3) 用紙は、A4判白色紙を使用し、縦位置で横書きとする。
- (4) 学位論文の表紙には,論文題目,専攻名,氏名を記載する。また,学位論文が英文の場合には, 論文題目の下に()書きで和訳を付記する。
- (5) 学位論文は、パソコン、ワープロ等活字で作成することとし、手書きの場合は黒ボールペンを 用いて楷書で清書する。英文はすべてパソコン、タイプ、ワープロ等の活字とする。
- (6) 学位論文の形式・頁数は特に指定しないが、図、表、写真も含めて、内容が理解し易いような適切な形式とする。
- (7) 参考文献は、著書(全員),題名、学術雑誌名(書物名),出版社、巻、号、頁(始頁-終頁) 及び発表年(西暦)を明記すること。

2 学位論文内容要旨

- (1) 用紙は、A4判白色紙を使用し、縦位置で横書きとすること。
- (2) 所定の様式により、和文の要旨と英文の要旨の両方を作成する。
- (3) 和文の要旨は, 10pt, 2,000 字程度(2頁以内), 英文の要旨は, 12pt, シングルスペース, 300 語程度とする。

2-6 学位論文公表に関する書類の提出

学位授与決定後、学位論文公表に関する下記の書類を速やかに提出してください。

①別記様式1:博士学位論文のインターネット公表(大学機関リポジトリ登録)確認書

②別記様式2:理由書(該当者のみ)

③別記様式3:論文内容要約

2-7 博士学位論文審査申請に係る提出様式

次ページから記してある各種申請書類は,工学部ホームページから様式をダウンロードできます。

●ダウンロード方法

- 1. 山形大学のホームページから「**学部・研究科・基盤教育院**」の「**工学部・工学部ホームペー ジ**」をクリック
- 2. 右下部分にある「**在学生の皆様へ」**の一番上にある「**学生サポートセンター」**をクリック
- 3. 中部分にある「各種申請様式のご案内」の「研究計画書について(博士前期課程)」をクリック

主指導教員殿

	年度入学	大学院博士後其	期課程
	専马	女	分野
学生番-	号		
氏	名		印

論文計画審査申請書

山形大学大学院理工学研究科学位審査細則第12条第1項の規定により、下記のとおり申請 します。

記

論文題目(仮題目) (英文の場合は、その和訳を()を付して併記すること。)

- (注)【分野名】 バイオ工学専攻は、バイオ化学分野、応用生命分野から選んで記載してください。 物質化学工学専攻、電子情報工学専攻、機械システム工学専攻、ものづくり技術経 営学専攻は分野を削除してください。
- (注) の部分は、削除して使用してください。

論文計画内容

		年度入学		専攻			分野
	学生番号_		_ 氏	名			
〈論文題目	(仮題目)〉						
〈内 容〉							
(注)【八昭	·夕】 - バノ-	ナー学車 放け	バスナルさ	学八 冠	广田	いた 婦ノ フ	記載してください

- 91 -

営学専攻は分野を削除してください。

(注) の部分は、削除して使用してください。

物質化学工学専攻、電子情報工学専攻、機械システム工学専攻、ものづくり技術経

内 容 公 開

	専攻	分野
学生番号		
氏 名		

[論 文]

- (1) Taro Yamagata, Jiro Yonezawa, △△△△△△△△△△△△△△△(論文名)(投稿準備中).
- ② 山形太郎, 米沢二郎, 東北三郎, △△△△△△△△△△△△△△△△△△△※※※※※※※※(誌名), (投稿中).
- (3) <u>山形太郎</u>, 米沢二郎, 東北三郎, △△△△△△△△△△△△△△△(論文名), ××××××× (誌名) (印刷中).
- (5) <u>山形太郎</u>, 米沢二郎, 東北三郎, △△△△△△△△△△△△△△(論文名), ×××××××(誌名), 第30巻, 第2号, PP.345-349, (2006.2).
- (注) ①全著者名(本人氏名に下線を引く),論文名,発表機関(学術雑誌名,巻,号,ページ: 始頁-終頁),(発表年月)を記入してください。
 - ②学位論文審査のための条件を満たす論文は、その番号を〇で囲んでください。なお、 〇をつけた論文については、共著者がいる場合、学位論文審査申請時に同意書を提出 する必要があります。
 - ③新しいものから古いものへ遡って年代順に記入してください。
 - ④印刷中の場合は(印刷中),投稿中の場合は(投稿中),準備中の場合は(投稿 準備中)と記入してください。

[学会発表]

- (注) ①全著者名(本人氏名に下線を引く),タイトル,会議名,開催地,ページ:始頁-終頁, (開催年月)を記入してください。
 - ②学位論文審査のための条件を満たす発表は、その番号を〇で囲んでください。
 - ③新しいものから古いものへ遡って年代順に記入してください。
- (注)【分野名】バイオ工学専攻は、バイオ化学分野、応用生命分野から選んで記載してください。 物質化学工学専攻、電子情報工学専攻、機械システム工学専攻、ものづくり技術経 営学専攻は分野を削除してください。

記載例及び(注)の部分は削除して使用してください。

1.1.1.1.1.1.1.1		-	_
	· 🖴	E	. 1
主指導教		\vdash	J

山形大学大学院理工学研究科長 殿

		左	F度入学	大学院博士	後期課程
			專马	ά	分野
	学生	番号			
	氏	名_			印
論文題目掼	是出:	書			
山形大学大学院理工学研究科学位審査細則第17 します。	条第2	項の規	見定により),下記のと:	おり提出
記					
論 文 題 目(英文の場合は、その和訳を()	を付し	て併言	己すること	: 。)	
<u></u>					1
指	グ <i>リ</i>	<u>ル ー</u>	プ 承	認 印	

- (注)【分野名】 バイオ工学専攻は、バイオ化学分野、応用生命分野から選んで記載してください。 物質化学工学専攻、電子情報工学専攻、機械システム工学専攻、ものづくり技術経 営学専攻は分野を削除してください。
- ※(注)の部分は削除して使用してください。

山形大学大学院理工学研究科長 殿

	年度入学	大学院博士後	期課程
	専	攻	分野
学生番	号		
氏	名		印

学位論文審査申請書

山形大学学位規程第18条第1項の規定により、博士(理学、工学、学術)の学位を受けたいので、下記の書類を添えて申請します。

記

1.	学	位	論	文	全文の電子データ
2.	論	文	目	録	5 部
3.	論文	内	容 要	旦日	5 部
4.	履	歴		書	1 部
5.	共 著	者の	同 意	書	4部
6.	論	文	別	刷	各 1 部

指導教員グループ承認印								

- (注)学位の種類に係る専攻分野は、該当する名称(理学、工学、学術のいずれか)を選択して ください。
- (注)【分野名】 バイオ工学専攻は、バイオ化学分野、応用生命分野から選んで記載してください。 物質化学工学専攻、電子情報工学専攻、機械システム工学専攻、ものづくり技術経営学専攻は分野を削除してください。
- ※(注)の部分は削除して使用してください。

分野

専攻

氏 名 印

論 文 目 録

1. 学位論文題目(英文の場合は、その和訳を()を付して併記すること。)

学生番号

0 0 0 0 0 0 0 0 0 0 0 0
$(0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0)$
2. 論 文
(1) Taro Yamagata, Jiro Yonezawa, △△△△△△△△△△△△△△△(論文名),
(2) <u>山形太郎</u> , 米沢二郎, 東北三郎, △△△△△△△△△△△△△△(論文名), ×××××(誌名), 第 30 巻, 第 2 号, PP.345-349 , (2006.2).
(注)①全著者名(本人氏名に下線を引く),論文名,発表機関(学術雑誌名,巻,号, ページ:始頁-終頁),(発表年月)を記入してください。
②学位論文審査のための条件を満たす論文は、その番号を○で囲んでください。なお、 ○をつけた論文については、共著者がいる場合、同意書を提出する必要があります。 ③新しいものから古いものへと遡って年代順に記入してください。
④掲載決定通知書のあるものは、その写しを添付し、(印刷中) 又は(掲載決定)と 記入してください。
3. 国際会議
(1) <u>Taro Yamagata</u> , Jiro Yonezawa, △△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△
(注)①全著者名(本人氏名に下線を引く),タイトル,会議名,開催地,ページ:始頁-終頁 (開催年月)を記入してください。
②新しいものから古いものへと遡って年代順に記入してください。
③学位論文審査のための条件を満たす発表は、その番号を○で囲んでください。④該当なしの場合は「なし」と記入してください。
4. 特許関係
(1) △△△△△(発明の名称),山形太郎,米沢二郎,2006年6月,特許第 0000000 号
(注)①発明の名称、出願者、出願年月、登録番号を記入してください。②学位論文審査のための条件を満たす場合は、その番号を○で囲んでください。
②子位論文番重のための未件を何たり場合は、その番号を○ C囲ん C くたさい。 ③該当なしの場合は「なし」と記入してください。

づくり技術経営学専攻は分野を削除してください。

記載例及び(注)の部分は、削除して使用してください。

(注)【分野名】 バイオ工学専攻は、バイオ化学分野、応用生命分野から選んで記載してくだ

さい。物質化学工学専攻、電子情報工学専攻、機械システム工学専攻、もの

主指導教員_____

論文内容要旨(和文)

年度入学 大学院博士後期課程

												1 /_	~/ 、	, /	() [50	1.1	[X /y]	H/IC/I
													専	攻			,	分野
										氏	:	名						印
論	文	題	目	\bigcirc														
				()	0	0	0	0	0	0	0	0	0	0	\bigcirc)	_		

- (注) ① タイプ, ワープロ等を用いてください。10pt 2,000字程度(2頁以内)とします。
 - ② 論文題目が英文の場合は、題目の下に和訳を()を付して併記してください。
- (注) 図表は用いないでください。

000000000

(注) 【分野名】バイオ工学専攻は、バイオ化学分野、応用生命分野から選んで記載してください。 物質化学工学専攻、電子情報工学専攻、機械システム工学専攻、ものづくり技術経営 学専攻は分野を削除してください。

記載例及び(注)の部分は、削除して使用してください。

氏 名

論文内容要旨(英文)

年度入学 大学院博士後期課程

専攻 分野

00000	00000	00000	00000	000000	0000000	000000	0000

- (注) ① タイプ, ワープロ等を用いてください。12ptシングルスペース300語程度とします。
 - ② 論文題目も英文としてください。
- (注) 図表は用いないでください。
- (注)【分野名】 バイオ工学専攻は、バイオ化学分野、応用生命分野から選んで記載してください。 物質化学工学専攻、電子情報工学専攻、機械システム工学専攻、ものづくり技術経営学専攻は分野を削除してください。

記載例及び(注)の部分は、削除して使用してください。

_			
1			
1			
1			
1			

氏 名 _____

ふりがな	男	左	月	口件		
氏 名	· 女	+	Л	μш	(満	歳)
本 籍 現 〒 都 道 住 府 県 所	_ ○○県○○ī 電話(5○○町○丁目)	1〇番〇	号		
学歴(高等学校卒業以降)・職歴・研究	歴・賞罰等につ	いて、各項目別	にまとめ	て記入す	ること。	
項目年月		事	項			
	立○○高等学校					
	大学〇〇学部(
	同上	卒業	/. 16n ≥m ∢n	00=	v. → .0\t	
	大学大学院〇(可期課程			
		可究到域上的	Λ. Π ΕΠ Σ Π	修		
	大学大学院〇(发别課程			,
職歴	ĮF	1 上		16	了見込み	*
4BX / / / / / / / / / / / / / / / / / / /						
研究 歴 研究期	間,研究事項	及び研究機関	を明記す	ーること	0	
賞罰						
所属学会						
上記のとおり相違ありる	ません。 年 月	В				
	1 /4					
		氏 名				

- (注) ① 「年月日」は、申請日(論文提出日)とします。
 - ② 「氏名」は戸籍のとおり記載し、通称・雅号等は一切用いないでください(他の書類についても同様とします。)。
 - ③ 「本籍」は、都道府県名のみ記入してください(外国人は国籍を記入します。)。
 - ④ 「現住所」は、住民票に記載されている住所(公称地名・地番)を記入し、連絡上必要がある場合は、団地名、宿舎名、番号等も記入してください。
 - ⑤ 「学歴」欄は、原則として高等学校卒業以降順を追って記入してください。
 - ⑥ 「職歴」欄は、常勤の職について、その勤務先、職名を順を追って記入してください。 ただし、非常勤の職であっても、特に教育・研究に関するものについては記入すること が望ましい。また、現職については、当該職について記入した箇所に「現在に至る。」 と明記してください。

同 意 書(Form of Consent)

○○○○年○○月○○日 (Year:_____Month:____Day:____)

山形大学大学院理工学研究科長 殿
To: Dean of Yamagata University Graduate School of Science and Engineering
氏名(Name): 〇〇〇 印 or Signature 所属(Affiliation): 現住所(Current Address):
Out the made of .
私は、私と共著(共同研究)の下記の論文を <u>○ ○ ○ ○ </u> が貴研究科に対して博士学位審査のために提出することに同意します。 I consent to the submission of the following paper(s), coauthored by <u>○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○</u>
記
(1)論文名(Title): ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○
(2) 論文名 (Title): OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
(注) 本同意書は、論文目録に記した関連論文の共著者(研究共同者)が記入・署名し、それによって当該論文を申請者が博士学位審査のために使用し、併せて共著者本人の学位申請のためには使用しないことを誓約する書類です。 This Form of Consent is to be completed by the coauthor (co-researcher) of the above listed paper(s). By signing it, the coauthor consents to the Doctoral degree applicant's use of the paper(s) for his/her Doctoral degree, and agrees not to use the same paper(s) for the coauthor's own academic degree.
 (注) ① 共著者のうち、博士の学位を有する者については、同意承諾書の文中「私は当該論文を自身のいかなる学位申請のためにも使用いたしません。」旨の文章は削除したものとします。 If the coauthor has already obtained his/her Doctoral degree, the statement, "I also agree not to use the same paper for any academic degree of my own." will be treated as null. ② 「年月日」は、申請日(論文提出日)以前でなければなりません。 The date of this Form of Consent must be on or before the date of submission of the applicant's doctoral dissertation. ③ 共著者(研究共同者)が外国に在住している場合、共著者からあらかじめ同意書を取り寄せておくのは博士学位論文審査申請者の責任です。
If the coauthor resides overseas, it is the Doctoral degree applicant's responsibility to obtain this Form of Consent from the coauthor(s) in advance. ④ 共著者 (研究共同者) が外国人の場合で印鑑を有していない場合は、署名でも可とします。 If the coauthor is a non-Japanese citizen, he/she may provide his/her signature in place of a name seal.

-101 -

記載例及び(注)の部分は、削除して使用してください。 Please delete all examples and notes before using this form.

物質化学工学専攻カリキュラム

物質化学工学専攻 授業科目及び単位数

科		TTTTY IXXII			開請		び週時	間数			
科目区分	分野名	授業科目名	単位数		年度		年度		年度	担当教員	備考
	機学	機能材料化学特論	2	前期 2	後期	前期	後期	前期	後期	落合	
		有機構造解析特論	2	2						片桐	
	棚学										
	無機学	固体量子物性特論 機能性セラミックス材	2	2						鵜沼	
専門	無機学	機能性セクミックス材料特論	2	2						松嶋	
基本	電影学	電子移動化学特論	2	2						仁科	
専門基礎科目	邠ピ	計測化学特論	2	2						伊藤 (智)	
目	化学工学	触媒化学特論	2	2						會田	
	化学工学	速度プロセス特論	2	2						宍戸	
	化学工学	分離プロセス工学特論	2	2						松田 (圭)	
	化学工学	機械的操作特論	2	2						小竹	
	棚学	超分子有機化学特論	2		2					伊藤 (和)	
	棚学	ナノ結晶・ナノ粒子特論	2		2					増原	
	無機学	構造制御工学特論	2		2					神戸	
	無機学	太陽電池工学特論	2		2					吉田	
専門	電影学	機能界面設計工学特論	2		2					立花	
専門応用科	邠ピ	分離計測化学特論	2		2					遠藤 (昌)	
科目	化学工学	粉体物性工学特論	2		2					木俣	
П	化学工学	伝熱促進工学特論	2		2					門叶	
	化学工学	安全工学特論	2		2					桑名	
	有機 掛	材料システム学特論	2		2					高橋 (辰)	
	有機料	有機光物理学特論	2		2					横山 (大)	
物	質化学	:工学研究計画	0								
物	質化学	工学特別計画研究	2								
物	質化学	:工学特別教育研修	0								
物	質化学	:工学特別演習B	0								
物	質化学	工学特別実験B	4								

(注) 1. 30年度及び31年度の「開講期及び週時間数」は、29年度に倣うものとする。

物質化学工学専攻 授業科目の内容

物貝化子工子导攻 按	未付日の内谷 	
授業科目名	授業科目の内容	担当教員
機能材料化学特論	種々の機能性有機材料の概説と、機能の発現機構について	教授
Chemistry of Functional	講義する。特に、分子構造と機能制御の関係について論じ、	落合文吾
Materials	新規な有機材料の分子デザインおよびその合成戦略につ	11 1 7 1
	が、ない。 いて解説する。	
	(・) 八件就りる。	
有機構造解析特論	有機構造解析は基礎有機化学の分野のみならず, 超分子化	准教授
Advanced Structure	学、薬学、材料化学などの分野で重要であり、近年の顕著	片桐洋史
Determination of	な分析技術進歩に伴い単一小分子からより大きな系へと	
Organic Compounds	対象が移っている。特に、分子認識、自己組織化、触媒、	
	バルク構造, 動的挙動の解析等において最新の分析技術を	
	取り入れた研究の推進が求められている。本科目は、各種	
	電子分光やX線解析、NMRおよび質量分析等の大型機器	
	のよる分析・解析技術を学び、各自の研究に役立つ知識と	
	技術の習得を目的としている。また、最新の研究における	
	具体的な構造解析例を詳細に分析することによって先端	
	分析技術の有機化学への応用について深く学び、現時点に	
	おける各分析装置の守備範囲と適用限界について正しく	
	理解する。	
固体量子物性特論	量子化学の包括的理解、並びにそこから発展する固体の電	教授
Solid State Quantum	気的・熱的・光学的物性の理論的取扱いの習熟を図るとと	鵜 沼 英 郎
Chemistry	もに、各種固体デバイス用材料を対象としたケーススタデ	
	ィを行う。	
機能性セラミックス材料	本講義では、実社会において現に利用されている、あるい	准教授
特論	は将来的に活躍が期待される機能性セラミックス材料を	松嶋雄太
Functional ceramic	取り上げ、その材料の機能、合成法、メカニズム、および	
materials	課題と将来展望についての講義を行う。授業では主に電子	
	セラミックスやハイブリッド材料を取り上げる予定であ	
	る。具体的には、透明電極などの半導体酸化物材料やコン	
	デンサ材料、二次イオン電池の正極材料や酸素センサーな	
	どで用いられるイオン伝導体、蛍光体や顔料などの光学材	
	料など、光学・電気分野において実際に応用されている電	
	子セラミックス、および無機材料の剛直性と有機物のしな	
	やかさを併せ持ち、将来的な活躍が期待される無機・有機	
	ハイブリッド材料である。	
电子移動化子符論 Chemistry of Electron	電子移動反応は、メッキや電解、電池等の電気化学反応ば	
Transfer Reaction	かりでなく、分光分析等の分析化学や各種センサー、光を	仁科辰夫
Transfer Reaction	利用した半導体等による画像等の情報記録、エレクトロク	
	ロミズム、生体内電子移動反応、有機伝導体など、電子工	
	学/生化学/医療/電気化学/分析化学/物理化学/エ	
	ネルギー工学等の各種分野にまたがった境界領域におけ	
	る重要な反応である。本講義は、電子移動反応のメカニズ	
	ムやキネティクスについて古典論及び量子化学的な取り	
	扱いを交えて議論し、かつ最近のトピックス等の応用に関	
	係した話題について講義する。	

授業科目名	授業科目の内容	担当教員
計測化学特論	物質の化学的な情報を取得するときに分析機器は、化合物	准教授
Advanced Instrumentation	の詳細な情報を得るため使用されている。工学部分野では	伊藤智博
Chemistry	生産管理や品質管理で使用され、製造ラインの歩留まりの	10. 15% 日 日
	上座音座や明真音座で使用され、袋垣ブインの多曲よりの 向上にも利用される。本講義では、分析機器の歴史・利用	
	目的や分析機器を構成しているハードウェアおよびソフ	
	トウェア、AD変換などの計測技術について解説する。さら	
	に、工場などで使われているライフサイクル管理システム	
	に、工物などで使われているブイブリイブル管理ブステムにおける分析機器や分析化学の位置づけ、ラインモニタリ	
	ング技術も解説する。小型・軽量化が進むセンサーやその	
	周辺の電子回路, AD変換器, マイコン制御についても解説	
	し, IoT(Internet of Things) や IoE(Internet of	
	Everything)を目指した周辺技術など最近のトピックも紹	
	かする。	
 触媒化学特論	酵素や微生物を担体上に固定した固定化生体触媒, 金属酸	教授
Heterogeneous Catalysts	ドネや似生物を担体工に固定した固定化生体服殊,金属版 化物微粒子及びこれを担持した光触媒等について調製法,	會田忠弘
11000 General Cumiyou	14物版位于及びこれを担付した九風媒寺について調製伝, 物性及び物質変換, エネルギー変換への応用について講義	
	が住及い物質を挟, エネルイーを挟べいが用に JV に開発しする。	
速度プロセス特論	する。 材料の構造と機能は密接に相関することが知られている。	准教授
Rate Processes	プロセスパラメータのコントロールで、微細な構造を発現	安戸昌広
11000000	させ、さらにそれを制御するためには、熱力学的な平衡論	
	とともに速度論的なプロセス解析が有効である。ここでは	
	複数の速度プロセスが複雑に絡み合って生じる現象を解	
	析するための手法を紹介する。	
分離プロセス工学特論	産業分野において様々な製品が生産され、それぞれにおい	准教授
Separation Processes	て分離プロセスが大きな役割を果たしている。この分離の	松田圭悟
	現象をモデル化し、その式化モデルから分離技術を解釈す	
	る事が重要である。ここでは単位操作を中心に分離プロセ	
	スの現象論や方法論について解説する。	
機械的操作特論	相変化を伴わない化学工学的操作を機械的操作という。機	助教
Mechanical Operation	械的操作では、粉粒体の挙動が中心となるので、粉粒体の	小竹直哉
	基礎物性(流動性,充填性など)やその力学(粒子運動,	
	粉体層の力学)を知ることが重要となる。本講義では、機	
	械的な諸操作、機械、装置の構造、原理、特性を説明し、	
	粉粒体の諸物性と関連づけて説明する。	
超分子有機化学特論	近年、急速に発展を遂げてきた超分子化学について、その	教授
Supramolecular Organic	概念、発展の方法などについて述べる。特に有機分子に関	伊藤和明
Chemistry	する分子認識、触媒作用、輸送、分子デバイス、自己組織	
	化等に関する最近の研究を中心に講義する。	
ナノ結晶・ナノ粒子特論	ナノ材料を基盤にしたナノテクノロジーは、幅広い分野に	准教授
Application of nanocrystals	わたる総合的な科学技術分野である。本講義ではナノ材料	增原陽人
and nanoparticles	の中でも特にナノ結晶・ナノ粒子に焦点を当て、これら粒	
	子の特性を活かしてどのようなデバイスに実装され、今後	
	どのような分野に使われていくのか?論文を中心として	
	講義する。	
構造制御工学特論	高温超伝導体についての講義を行う。高温超伝導体材料の	教授
Microstructual design	微細構造と物性、超伝導の関わり合いについて、理論を交	神戸士郎
of electromagnetic	えながら論じる。さらに、磁気センサ用酸化物超伝導体や	
material	超伝導線材への応用に関しても述べる。	

授業科目名	授業科目の内容	担当教員
太陽電池工学特論 Solar Cells	超低価格化,超高効率化,軽量フレキシブル化などが期待される最新の太陽光発電技術について紹介すると共に,その材料設計,デバイス原理などの基礎について講義する。	教授 吉 田 司
機能界面設計工学特論 Functional Interface Design for Engineering	電池やコンデンサなどのエネルギーデバイスを中心として、それらの機能を効率よく発現させるための界面設計の概念の理解とその方法論を解説する。	准教授 立 花 和 宏
分離計測化学特論 Analytical Chemistry for Sensing and Separation	物質の同定あるいは定量を行うには、物質に固有の情報を抽出・解析し、分離及び計測法を設計する必要がある。本講義では、物質情報の取得に対するアプローチとしての物理的手法及び化学的手法について議論し、高感度計測、高機能分離計測、簡易計測のシステム構築について論ずる。	准教授 遠 藤 昌 敏
粉体物性工学特論 Powder Properties Engineering	粉体は、工業的にも日常にもよく使われる材料であり、個体でありながら集合体として物理的または化学的に特異な物性を示すことが知られている。本講義は、個々の粉体から集合体に至るまで、これら粉体の特異な物性の発現原理や、物性の測定方法について論ずる。	教授 木 俣 光 正
伝熱促進工学特論 Heat Transfer Enhancement	熱移動速度の制御法としての伝熱促進技術の基礎を講義すると共に,境界層の干渉を利用した伝熱促進技術および潜熱蓄熱材,超臨界流体,ナノ粒子分散流体などの新たな熱媒流体を利用した伝熱促進技術に関する最近の話題についても講義する。	准教授 門 叶 秀 樹
安全工学特論 Safety engineering	プラントなどでの潜在的な危険有害性を顕在化させない、安全なシステムを構築するためには、リスクを的確に評価し、適切なリスク低減対策を実施することが重要である。そこで、ハザード・リスクの考え方や、リスクアセスメントの方法など、安全管理の基本を説明する。またリスク評価には欠かせない知識である火災や爆発現象の科学的理解について、反応性流体力学の知識や、最新の研究結果も含めて解説する。	准教授 桑 名 一 徳
材料システム学特論 Materials System Engineering	高分子・炭素・セラミックス・金属を、材料科学の観点からとらえる。まず、原子構造、結合様式、結晶構造について系統的に整理する。これらの微視的な特徴と巨視的な特性である物性、機能性との相関関係について物質化学の観点からシステム的に考える。さらに各々の材料の成形加工方法の特徴についても物質化学の観点から体系的にとらえ概説する。	教授 高橋辰宏 (補機構)ンステム研究剤)
有機光物理学特論 Advanced Organic Photophysics	有機材料およびそれを用いた光デバイスの光機能を制御するためには、有機材料特有の光学物性を正しく理解し、その特性に応じて材料設計・デバイス設計を行うことが重要になる。本講義では、有機材料の光学特性およびその物理的・化学的基礎について解説しつつ、その多彩な特徴を利用した有機半導体デバイス応用技術について紹介する。有機化合物の分子構造と集合状態が固体としての物理的特性とどのように関連しているかについて学びつつ、各論ではないそれらの一般的な特徴を捉え、材料設計およびデバイス設計の指針を得るための考え方を習得する。また、その考え方が、有機 EL および有機薄膜太陽電池等の有機半導体光デバイスにどのように活かされているか、具体例を交えつつ概説する。これらの内容を通じて、有機材料の単分子としての特性と多くの有機分子からなる固体膜の物性との間の関係性(類似性と相違性)について理解を深め、デバイス応用に活かすことを目指す。	准教授 横山大輔 (f機材料ンステム研究科)

バイオ工学専攻カリキュラム

バイオ工学専攻 授業科目及び単位数

				期及で	 が週時				
授業科目名	単位数		年度		年度	3 1		担当教員	備考
从			後期	前期	後期	前期	後期	小 に自自	
生体生理工学特論	2	2						新関	
生体機能修復学特論	2		2					山本	
ロバスト制御特論	2		2					村松	
統計情報特論	2		2					湯浅	
ロボットシステム特論	2		2					井上	
先端情報通信LSIシステム特論	2		2					横山(道)	
再生医工学特論	2		2					馮	
発生生殖工学特論	2		2					阿部	
生体模倣科学特論	2	2						佐藤 (力)	
天然物合成化学特論	2	2						佐藤 (慎)	
生物資源利用化学特論	2		2					多賀谷	
生体機能関連化学特論	2	2						木島	
ソフト界面科学特論	2	2						野々村	
生命情報学特論	2		2					木ノ内	
有機合成化学特論	2	2						波多野	
生命有機化学特論	2	2						今野	
生体物理科学特論	2	2						渡部	
生体分子モーター特論	2		2					羽鳥	
光ナノ計測特論	2	2						堀田	
生物無機化学特論	2	2						川井	
遺伝子工学特論	2		2					黒谷	
蛋白質工学特論	2	2						真壁	
応用微生物学特論	2		2					矢野	
バイオ工学研究計画	0								
バイオ工学特別計画研究	2								
バイオ工学特別教育研修	0								
バイオ工学特別演習B	0								
バイオ工学特別実験B	4								

⁽注) 30年度及び31年度の「開講期及び週時間数」は、29年度に倣うものとする。

バイオ工学専攻 授業科目の内容

	**日の内台	
授業科目名	授業科目の内容	担当教員
生体生理工学特論	呼吸,循環,運動制御系などの個々の生体制御系の生理機	教授
Biophysiological	能を学び、計測法も含めてシステム論的観点から考察す	新関久一
Engineering	る。また、最新の文献購読を通して生体生理分野に関連し	
	た研究動向を探るとともに、生物の論理に基づいた工学的	
	技術応用の試みについて調査する。	
生体機能修復学特論	人間の機能回復を図る上で、様々な人工材料が臨床現場で	教授
Bio-functional	用いられている。特に,人間の骨格をなす生体骨の役割,	山本 修
Improvement Science	骨疾患に対する生体材料の適用などの臨床医療に基づい	
	た事例を詳述し、生体機能を修復するための理論、方法及	
	び応用方法を解説する。	
ロバスト制御特論	ロバスト制御,特にその代表的なものであるH無限大制御	准教授
Robust Control	を中心に、基礎理論と応用法について解説する。まずはロ	村松鋭一
	バスト制御の基本的な考え方から始まり, 理論で用いられ	
	る数学的基礎を講義する。その後、動的システムのモデリ	
	ングにおいて生じるモデル化誤差の数式表現を示し、モデ	
	ル化誤差を考慮した制御系の安定条件を導く。そして、安	
	定条件を満たすコントローラの設計方法, 設計に用いられ	
7+31 + +p (+ 3)	る数値計算法、実システムへの応用を講義する。	*/ 5
統計情報特論	情報を統計学的な観点からながめ、最適な推定あるいは決	教授
Statistical Informatics	定を行うための理論に焦点をあてて論ずる。実際の応用例	湯浅哲也
mormatics	として、画像処理におけるパターン認識・領域分割を取り	
	上げ、統計学が情報工学の場面でどのように利用されてい	
	るかを具体的に紹介し、自らその応用例の発想を促す。	***
ロボットシステム特論 Advanced Robotic	本講義では、システム工学の立場から、ロボットの構造や	教授
Systems	制御について論じる。複雑なシステムである生物は、ロボルトの良いなますない。それない。	井上健司
Systems	ットの良いお手本をいえる。そこで、ロボットアーム、ヒューマノイドロボット、脚ロボットなど、人や生物を規範	
	としたロボットを中心に解説する。	
先端情報通信LSIシス	た端情報通信技術(IT)を用いたユビキタスネットワー	
一 テム特論	クシステムにおいて、構成する送受信システムの小型化・	横山道央
Advanced LSI System of	うりろうなにおいて、構成する医支信システムの小空化・ 高性能化・低消費電力化が求められる。実際に用いられる	
Information Technology	デジタル通信方式に特化した超小型・高性能LSIの最適	
	設計法について、必要となる半導体デバイス理論・LSI	
	回路構成並びに超小型3次元実装技術について講義する。	
再生医工学特論	再生医工学に必要な基礎と専門知識について講義を行う。	准教授
Tissue Engineering	まず、多細胞生物の生体機能の最小単位である細胞の性質	馮忠剛
3	を理解し、これを工学的に応用していくためにはどのよう	VE. 191
	な方法論が必要かを学習する。さらにこの領域でよく利用	
	される工学的な技法、例えば3次元細胞培養支持体、細胞	
	培養バイオリアクター、細胞成長の方向性とその誘導など	
	について最新の研究動向を紹介する。	
発生生殖工学特論	発生・生殖現象における呼吸代謝を中心とする細胞機能制	教授
Development and	御機構を詳述し、その解析及び計測技術と医療・産業への	阿部宏之
Reproductive Engineering	応用について解説する。	
	-	

授業科目名	授業科目の内容	担当教員
生体模倣科学特論 Biomimetic Science	生体系における反応を模倣する生体模倣科 (Biomimetic Chemistry) にいて酵素を中心にして概観すると共に、光合成のモデル化、人工光合成の試みについて論じる。	准教授 佐藤力哉
天然物合成化学特論 Synthesis of Natural Products	天然有機化合物の生合成経路について解説するととも に,生合成を範とする最先端の有用天然有機化合物の合 成法を紹介する。	教授 佐藤慎吾
生物資源利用化学特論 Industrial Usage of Biomass and Fossil Resources	生体及び生物から誘導される資源について概説し、その有用化合物への変換反応及びエネルギー資源としての利用について体系的に講義する。また、未利用炭素資源の高度利用の観点から、物質変換反応を効率的及び選択的に行うためのプロセス・機能性材料等について論じる。	教授 多賀谷 英幸
生体機能関連化学特論 Chemistry of Bioscience And Biotechnology	酵素、核酸、タンパク質など複雑な生体機能関連化合物 の構造解析法、合成法やその生理活性について解説する。	准教授 木 島 龍 朗
ソフト界面科学特論 Soft Interface Science	水と油の界面では、生物活動において重要な様々な現象が起こっている。最近では、分析技術が発達、新しい物理モデルも提案されたため、界面現象の理解は飛躍的に進んだ。本講義では、界面における界面活性剤や高分子、固体粒子のふるまいを理解するための考え方とその応用について解説する。	准教授 野々村 美宗
生命情報学特論 Bioinformatics	分子生物学の発展により、生命に関するデータが蓄積され つつある。生命情報学(バイオインフォマティクス)は、 生命科学と情報工学を組み合わせて、大規模なデータから 生命に関する情報を明らかにすることを目指す。ゲノム・ トランスクリプトーム・プロテオーム等の膨大なデータか ら、生命情報・遺伝情報を解明するための方法を論ずる。	准教授 木ノ内 誠
有機合成化学特論 Fine Organic Synthesis	種々の有機化学反応の合成反応を学ぶことによって,反応条件や反応機構,さらに,反応を用いる試薬に関する知識を習得する。習得した合成反応の知識を生かし,実際の博士論文研究に応用することを目標とする。	准教授 波多野 豊平
生命有機化学特論 Organic Chemistry for Life Science	生命現象の解明を行うためには低分子有機化合物と生体 高分子の両面からの理解が重要である。特にその関わり 合いについての研究法を概説する。 低分子については天然有機化合物を題材に有機化合物 の分子構築法,立体化学制御法の基礎を解説する。また, 生体高分子の合成法について核酸,蛋白質,糖鎖につい て化学的,生物的な合成法について概説する。	准教授 今 野 博 行

授業科目名	授業科目の内容	担当教員
生体物理科学特論 Physical Science for Biological System	生体内部の形態や機能,化学物質の挙動等の不可視情報を X線,超音波,ESR,NMR,コヒーレンス光やニアフィールド光を用い、2次元の分布として可視化(画像化) する計測手法やそれらを基にした3次元計測手法,また電 磁界を用いた生体細胞計測・生体細胞操作法について論ず る。さらに、このようなセンシング技術を用い、生体シス テムや生命活動の状況を高感度、高精度、高信頼に抽出す る手法について考察する。	准教授 渡 部 裕 輝
生体分子モーター特論 Biological molecular Motors	生体中および細胞中において運動や輸送そしてエネルギー変換に関与するたんぱく質(分子モーター)の構造と機能について論じる。さらに、そのようなナノ分子の最新計測方法について解説する。	准教授 羽 鳥 晋 由
光ナノ計測特論 Advanced Optional Nanoscopy	光学顕微鏡は、生きた細胞内の微細構造、反応を可視化することができるため、バイオ工学研究を推進する上で最も 重要な基盤技術の一つとなっている。本講義では、各種光 学顕微鏡の測定原理、設計法、蛍光タンパク質を使ったバイオイメージング、最新の光学顕微鏡技術によるナノイメージング、レーザーマニピュレーション法等について、最 新の文献情報を織り交ぜながら解説する。	准教授 堀 田 純 一
生物無機化学特論 Applied Bioinorganic Chemistry	典型金属元素ならびに遷移金属元素と結合して存在する 生体分子の生理機能と、医薬品に含まれる金属元素の生体 分子に対する作用機序について、金属元素周辺の配位子置 換反応および電子移動反応の具体例を示しながら解説す る。	准教授川 井 貴 裕
遺伝子工学特論 Genetic Engineering	細胞・組織工学および遺伝子工学技術の基礎知識から応用 技術までを講義し、細胞・組織工学および遺伝子工学技術 の医療分野での応用について解説する。	准教授 黑 谷 玲 子
蛋白質工学特論 Protein Engineering	蛋白質工学は、生命を担う分子である蛋白質を遺伝子工学などの技術を用いて改変し、有用なものへ変換する技術である。本講義では、生物機能工学の基礎となる遺伝子工学や蛋白質工学を理解するとともに、それらを用いた最新技術を理解することを目的とする。	准教授 真 壁 幸 樹
応用微生物学特論 Applied Microbiology	本講義では、微生物を利用した食品醸造をはじめ、アミノ酸や核酸の発酵生産について、微生物の二次代謝産物である抗生物質等について解説する。また、微生物の物質生産能向上を目的とした育種技術に関して、基本的な突然変異誘発技術やDNA組換え技術についても講義する。	助教 矢 野 成 和

電子情報工学専攻カリキュラム

電子情報工学専攻 授業科目及び単位数

电】用拟工于守久。没未们	単	// 0	干 工		19.1ET = 1	DD 1//		T	
授業科目名				期及で			tite -lee		
		29年度				31年度		担当教員	備考
	数	削期		前期	後期	前期	後期	-1	
光波伝送工学特論	2		2					高野	
テラヘルツエレクトロニクス	2		2					山田	
高電界応用工学特論	2	2						杉本 (俊)	
パルス電磁プラズマ工学特論	2	2						南谷	
電気流体力学特論	2	2						八塚	
強力超音波工学特論	2	2						足立	
生体情報計測特論	2	2						佐藤 (学)	
ナノ半導体デバイス特論	2		2					廣瀬 (文)	
電子材料プロセス工学特論	2		2					松下	
固体センサ工学特論	2	2						奥山 (澄)	
半導体光工学特論	2	2						高橋 (豊)	
量子機能デバイス工学特論	2	2						中島	
超伝導高周波デバイス	2		2					齊藤(敦)	
構造制御工学特論	2		2					有馬	
ナノ磁気デバイス工学特論	2	2						稲葉	
真空薄膜工学特論	2		2					成田	
磁性材料物理学	2		2					加藤	
磁気物性特論	2	2						安達	
ナノ磁性材料学特論	2		2					小池	
数理物理学	2		2					小島	
メディア信号処理特論	2	2						近藤	
音声言語処理特論	2		2					小坂	
知能情報特論	2		2					大槻	
情報通信ネットワーク特論	2		2					小山 (明)	

			開請	芽期及 で	 が週時				
授業科目名	単位数		年度		年度		年度	担当教員	備考
	叙	前期	後期	前期	後期	前期	後期		
数理情報特論	2	2						神谷	
複雑系特論	2	2						田中	
応用数理工学	2		2					久保田	
計算量理論特論	2		2					内澤	
統計的機械学習特論	2	2						安田	
センシングシステム特論	2	2						田村 (安)	
非破壊検査システム特論	2		2					柳田	
計測情報特論	2		2					平中	
知覚情報処理概論	2		2					山内	
脳機能計測論	2		2					深見	
心理物理学特論	2	2						永井	
認知的・感性的ヒューマンインタフェース	2	2						野本	
高性能計算特論	2		2					齋藤 (歩)	
計算機アーキテクチャ特論	2	2						多田	
電子情報工学研究計画	0								
電子情報工学特別計画研究	2								
電子情報工学特別教育研修	0								
電子情報工学特別演習B	0								
電子情報工学特別実験B	4								

⁽注) 30年度及び31年度の「開講期及び週時間数」は、29年度に倣うものとする。

電子情報工学専攻 授業科目の内容

电丁间報工子导攻 授 授業科目名	表 付日の内谷 授業科目の内容	担当教員
光波伝送工学特論 Lightwave Transmission Engineering	高速な情報伝送や高い信号対雑音比の計測技術に応用ができる電波および光の信号伝送技術に関して、電磁波伝搬の基礎から光波伝搬の発展的内容までを講義する。弱導波近似が成り立つ領域から高屈折率比の全反射を利用する導波理論と、屈折率周期構造がもたらすブラッグ反射を利用した導波理論について論じる。さらに、長距離光波伝搬における波形歪みについて論じる。	准教授 高 野 勝 美
テラヘルツエレクトロニ クス Terahertz Electronics	テラヘルツ帯電磁波は、超高時間分解計測、高解像度電磁波イメージング、高ビットレートパルス無線、超高速コンピューティングなどの魅力あるアプリケーションを有するために昨今大いに注目を集めている。講義では、テラヘルツ帯電磁波検出の原理に特に注目し、シリコンボロメータやジョセフソン接合などの検出器の他に、時間領域分光法なども例に挙げつつ解説する。また、テラヘルツ帯電磁波の応用についても解説する。	助教山田博信
高電界応用工学特論 High Electric Field Engineering	大気中の高電界下におけるプラズマ・放電現象の基礎を概略し、それらの放電の持つ機能の工学的応用について概略する。また、電極構造を工夫することで機能を付加する方法論について講ずる。	准教授 杉 本 俊 之
パルス電磁プラズマ工学 特論 Pulsed Electromagnetic Phenomenon and Plasma Engineering	ナノ秒オーダ、またはナノ秒以下の非常に短い時間内に生成した世界の消費電力に相当するような巨大な電力パルスにより起こる電磁界減少と放電によるプラズマ現象の基礎特性と、パルス特有の特性について述べる。また高電力パルスによる電磁界現象とプラズマ現象は従来の技術ではできなかった新しい応用を可能にする。この応用について述べる。特に高電力パルスの環境応用、バイオ応用については詳しく述べる。	准教授 南 谷 靖 史
電機流体力学特論 Electrohydrodynamics 強力超音波工学特論 High-Power Ultrasonics	流体に加わる静電気力と流体の運動現象について,電気流体力学の基礎から応用までを講義する。主として,準静的及び動的系に対し,流体中の電荷の発生及び消滅,それらの電荷に働く静電気力に起因する流体の運動を,電気流体力学的基礎方程式を導入して論じる。 超音波のエレルギーを工業的に応用するための技術に関して論じる。先ず,各種の工業的応用例を分類しながら概観した後,そこで用いられる振動系の設計理論や現象の解析手法などを,最新の研究成果を取り入れ解説する。	准教授 八 塚 京 子 教授 足 立 和 成
生体情報計測特論 Measurement and Instrumentation of Bio-information	生体などの多種散乱体から三次元の情報抽出を行う計測技術に関して,波動や粒子線を用いる手法を中心にその原理や特徴を論じ,他分野への波及効果や技術の進展について考察する。	教授 佐藤 学
ナノ半導体デバイス特論 Nano Semiconductor Devices	Si テクノロジーの超微細化は留まるところを知らず、まさに原子スケールに突入しようとしている。半導体材料を原子レベルで制御し積層することで、全く新しい機能をもった電子デバイスを創製することができる。本講義では、半導体の原子レベル加工技術をモニタリング、それを活かした超格子デバイスについて講義する。	教授廣瀬文彦

授業科目名	授業科目の内容	担当教員
電子材料プロセス工学特論	シリコン単結晶基板上に電子デバイスを形成する際に必要	教授
Physics and Technology	とされる不純物の拡散、イオン打ち込み、酸化、エッチン	松下浩一
of Semiconductor Processing	グ、リソグラフィ、プロセス環境などのプロセス技術とそ	
	の背後にある物理について講義する。	VL +VI. 145
固体センサ工学特論 Solid-State Sensor	環境をセンシングし自らのおかれた状況を知るために用い られる物理センサ・化学センサのうち半導体等の電子デバ	准教授 奥 山 澄 雄
Engineering	イスを用いた固体式のセンサの原理・作成方法・利用等に	英 田 位 雄
	ついて体系的に講義する。応用例として、化学センサの一	
	種である水素ガスセンサの作成方法・利用方法について理	
	論および実際の両面から論ずる。	
半導体光工学特論	半導体バルク及び量子井戸、量子細線、量子点等の微細構	准教授
Optical Engineering of Semiconductors	造と光の相互作用について講義を行う。特にこれらの物質	高橋 豊
Semiconductors	中の素励起と多体効果に焦点を当てて、これらが光非線形	
	効果にどのように寄与しているかを示し、その効果が最近 研究開発が進められている様々な光学素子にいかに応用	
	されているかを解説する。	
量子機能デバイス工学特論	粒子の波動性に基づく量子力学的挙動の顕在化と機能発	教授
Quantum Functional	現を利用した様々な量子機能デバイスの提案がなされつ	中島健介
Device Engineering	つある。超伝導量子機能デバイスを例にとり, テラヘルツ	
	波の発生・検出といった最新の話題を交えて、量子機能デ	
初に送き国体でいる。	バイスの研究とその工学的応用の最先端を解説する。	VL +VI.144
超伝導高周波デバイス High Frequency	本講義では超伝導材料を用いた高性能高周波デバイス応用に必要となる超伝導の基礎的性質と代表的な理論につ	准教授 齊 藤 敦
Superconducting Device	用に必要となる地伝等の基礎的性質と代表的な理論にう いて講義する。また,超伝導フィルタ・アンテナ・接合に	質 膝
	関する研究例を挙げてその応用へのアプローチについて	
	講義する。	
構造制御工学特論	磁気材料や超伝導材料の機能性はその微細構造と深く関わ	助教
Microstructural Design	り合っている。磁性材料の微細構造と磁化機構、スピンの	有馬 ボシール
of Electromagnetic Material	動力学との関係、及び具体的な応用について論じる。また、	アハンマド
	微細構造を実現するための材料作製,加工技術についても 述べる。また,エネルギー・エレクトロニクスデバイス	
	等の基盤を担う半導体無機材料においてもその組成や	
	微細構造が特性と深く関係している。本講義では微細材	
	料合成とそれらの新たな機能や従来膜の特性を凌駕する	
	機能を発現させ、エネルギーやエレクトロニクス分野にお	
	ける新規材料・革新的デバイスの開発と将来的な可能性に	
)	ついて論じる。	
ナノ磁気デバイス工学特論 Nano Magnetic Devices	磁気デバイスでは、大容量・小型化のニーズを背景に、デバイスの微小化が急速に進んでおり、数10nmのサイズ	教授 莱 信 去
Ivano iviagnone Devices	ハイスの個小化か急速に進んでおり、数 I U n mのサイス	稲葉信幸
	を出すために、磁性薄膜や磁性微粒子の原子オーダーでの	
	制御が重要となってきている。ここでは、磁性薄膜の作成	
	方法,薄膜・微粒子の微細構造と磁気特性との関係,およ	
	びこれを用いた磁気デバイス(ハードディスク、磁気固体	
	メモリNRAM)について講義する。	

授業科目名	授業科目の内容	担当教員
真空薄膜工学特論 Vacuum and Thin Film Engineering	近年の高性能電子デバイスは,真空環境下で多くの薄膜形成技術を用いて作製される。真空と薄膜形成技術は表面現象との関わりが深く,ナノメートルスケールのデバイスを作製する上で表面科学の知識が不可欠である。本講義では,表面物理の基礎について論じ,先端真空・薄膜形成技術について解説する。	助教成田 克
磁性材料物理学 Physics of Magnetic Materials	磁性材料の物理的性質を理解するための基礎的事項について学ぶ。磁性材料研究の歴史、磁性材料の分類、磁場の発生法、磁化の測定法について述べ、特にハード磁性材料の磁気特性を決定する結晶場相互作用と磁気異方性、局在磁気モーメント、強磁場磁化過程について、希土類・遷移金属化合物における実例を用いながら講義する。	教授加藤宏朗
磁気物性特論 Advanced Physics of Magnetic Materials	固体中の電子状態を局在系と遍歴系のそれぞれについて, どのような扱い方で求めるかを解説し,量子状態に基づき それぞれの物質が示す特徴的な磁気的性質について講義 する。	准教授 安 達 義 也
ナノ磁性材料学特論 Advanced Nano-Magnetic Materials	現代の磁性材料はナノオーダーの構造制御によって高いスピン機能を目指すのはもちろんのこと、新規な物性を引き出すことが出来るようになってきた。ナノ磁性材料学特論では、これらの多彩な物理的振舞いを示す磁性体の性質とそれを応用した最近の磁性材料の展開について解説すると共に、ナノ構造制御手法である薄膜プロセスと微細構造ならびに磁性の評価手法について論ずる。	准教授小 池 邦 博
数理物理学 Mathematical Physics	数理物理学における完全可積分な模型,つまり解析的な厳密解が導かれる模型について考察する。Yang-Baxter 方程式の解により可解模型を定める。熱力学的極限における無限自由度の模型を考え,無限次元の代数を直接扱うことで,数学的に強固な土台の上で問題を単純化するのである。量子XXZスピン鎖を例にとり,対称性としてアフィン量子群を導入する。頂点作用素を導入し,それによりHamiltonianを記述する。頂点作用素の自由場表現を構成し、そのトレースとして相関関数の厳密解の積分表示を導出する。	教授小島武夫
メディア信号処理特論 Multimedia Signal Processing	This lecture will cover the basics, recent technology advances, as well as applications of multimedia signal processing including speech, music, still images and video, We will cover coding for communications and storage, synthesis, recognition and understanding, as well as international standards. This lecture will be conducted in English upon mutual agreement with the student(s).	教授
音声言語処理特論 Spoken Language Processing	音声言語によるマン・マシン・インタフェースに関する各種技術について論ずる。まず統計的音響モデルや統計的言語モデルなど基礎的な技術について述べ、さらに連続音声認識技術、音声対話処理技術等の概要を講義する。	教授 小 坂 哲 夫
知能情報特論 Advanced Intelligent Informatics	音声認知過程などを例にとり、確率的なモデルの構築とその検証によるメカニズム解明手法について講義・演習を行う。また、統計モデリング手法の予測問題・判別問題への応用について講義・演習を行う。	准教授大 槻 恭 士

授業科目名	授業科目の内容	担当教員
情報通信ネットワーク特論 Information and Communication Networks	OSI参照モデル、TCP/IP参照モデルを例にネットワークプロトコルの詳細について講義する。また、LAN、インターネット、無線ネットワーク、アドホックネットワークなどで最近研究されているプロトコル技術についても紹介する。	教授 小 山 明 夫
数理情報特論 Special Lecture on Mathematical Information Processing	自然現象及び工学的現象を記述する微積分方程式系を,数値的に解く手法を論じる。特に,ゲージ不定性を保存したマックスウェル方程式の離散化法として辺要素有限要素法を紹介し,非同次楕円型境界値問題の離散化法として,双対相反法,多重相反法を考察する。	教授 神 谷 淳
複雜系特論 Complex Systems	情報を統計物理学的手法により捉え直し、物理・化学・生物系のみならず社会科学系で観察される様々な創発現象や、自己組織化現象を定性的に説明することを試みる。また、それを基にした集団協調学習の工学的応用を論ずる。	准教授 田 中 敦
応用数理工学 Applied Mathematical Engineering	現象の本質を数学的に記述した数理モデルの解析法や,実社会で数理工学がどのように使われているかといった応用例を学習することを通じて,複雑な現象の全体を数理的に捉える能力を身につける。特に,力学系の分岐理論について詳述し,平衡点,固定点,周期振動といった特徴的な解の性質と位相的分類について説明する。また,様々な非線形最適化法とその適用事例についても説明する。	准教授 久保田 繁
計算量理論特論 Advanced Computational Complexity	本講義では、チューリング機械や論理回路等、予め規定された演算処理を組合せて情報処理を実現する様々な計算モデルについて講義する。特に、これらの計算モデルによって効率よく所望の計算が実現できる問題の性質や、各計算モデルの相対的な関わりについて、各計算モデルの計算能力の観点から論ずる。	准教授 内 澤 啓
統計的機械学習特論 Statistical Machine Learning	本講義では、現代型データサイエンスの根幹技術の一つである統計的機械学習の基礎と幅広い応用について論ずる。統計的機械学習の中核的モデルである確率的グラフィカルモデル(ベイジアンネットワーク、マルコフネットワーク等)について深く理解し、その具体的な応用課題(コンピュータビジョン等)への適用を通して統計的機械学習と現代の情報科学における課題とのつながりを学ぶ。	准教授 安田宗樹
センシングシステム特論 Advanced Sensor Informatics	コンピュータによる信号処理を中核としたセンシングシステムの設計手法について、①逆問題解法、②ハードウェアの設計、③ソフトウェアの構成 の3つの観点で学ぶ。数学的・技術的な背景に関する講義の後、音響波や電磁波を用いて撮像システムなどの具体例について文献調査と演習を行う。	教授田村安孝
非破壊検査システム特論 Non-destructive Inspection System	非破壊検査は光や磁気もしくは音波などを利用して人間 や構造物の欠陥等の検査を行う技術である。本講義科目で は、音響波を用いた非破壊検査の技術およびシステムの概 要を理解するとともに実用されている信号処理技術や画 像処理方法を把握する。	准教授 柳 田 裕 隆

授業科目名	授業科目の内容	担当教員
計測情報特論	さまざまな分野における計測に関し、情報論的議論を行	教授
Advanced Instrumentation	う。情報担体と相互作用,理論的可能性と極限計測などの	平中幸雄
Informatics	基本的検討を行うとともに、不可視情報の可視化やインテ	
	リジェント計測, ネットワーク特性測定のように間接的手	
	段を多用せざるを得ない状況などについても論ずる。	
知覚情報処理概論	本講義では、人間の知覚における情報処理プロセスに関	教授
Information Processing	し、入力である生理的メカニズムからその特性、最終的な	山内泰樹
of Human Perception	認知へと至る脳内での処理メカニズムまで順を追って取	
	り扱い、日頃我々が無意識に利用している知覚情報を理解	
	することを目的に、その基礎について講義を行う。	
脳機能計測論	人間工学や臨床診断で広く用いられている脳機能計測機	准教授
Measurement of Brain	器をいくつか取り上げ、それらの計測原理のみならず、取	深見忠典
Functions	得データの信号・画像解析手法、解析結果の解釈に至るま	
	でを講義する。また、基礎および応用研究の最新動向につ	
	いても紹介する。	
心理物理学特論	ヒトの知覚認知特性を理解するために用いられる実験手	准教授
Advanced Psychophysics	法の一つが心理物理学的実験法(以下、心理物理実験)で	永 井 岳 大
	ある。本講義では,心理物理学の理論的背景,実験手続き	
	などの方法論,データの解析に必要とされる統計解析法,	
	そして、実験から得られる知見やその応用例など、心理物	
	理学を様々な観点から論ずる。	
認知的・感性的ヒューマン	人は認知プロセスや感性的法則に無意識に従いながら,道	教授
インタフェース	具や機械を感じ、メンタルモデルとして解釈し、判断して	野本弘平
Cognitive and KANSEI	行動している。これらの認知と感性, および経験を経て形	
Human Interface	成される暗黙知などを科学的に明らかにするとともにヒ	
	ューマンインタフェースへの応用について学ぶ。	
高性能計算特論	近年,要素分割を必要としない新たな数値解法 (メッシュ	准教授
Special Lecture on High	レス法)が数多く提案され、電磁界解析、構造解析、超伝	齋 藤 歩
Performance Computing	導工学等の分野で素晴らしい成果が得られている。本講義	
	では、境界型メッシュレス法及び領域型メッシュレス法と	
	してそれぞれ境界節点法及び Element-Free Galerkin 法を	
=1 behalik	解説する。	ni del
計算機アーキテクチャ特論	計算機の構成と各構成要素の働きを概説し、現在の計算機	助教
Computer Architecture	の高性能化の基礎となる手法であるパイプライン処理、キ	多田 十兵衛
	ャッシュメモリおよび並列処理について講義する。また、	
	高性能計算機を実現する上での課題および最新の技術動	
	向について解説する。	

機械システム工学専攻カリキュラム

機械システム工学専攻 授業科目及び単位数

			開講	期及で	バ週時				
授業科目名	単位数		年度		年度		年度	担当教員	備考
1		前期	後期	前期	後期	前期	後期	用 十 勿	
大変形非弾性力学	2	2						黒田 充紀	
スマートマテリアルの構造・変形・機能	2		2					村澤剛	
知的流体情報学	2		2					李鹿 輝	
流体科学特論	2	2						篠田 昌久	
機能情報計測制御特論	2		2					秋山 孝夫	
熱と物質移動のシミュレーション技法	2	2						中西 為雄	
燃焼科学特論	2		2					奥山 正明	
振動制御工学	2	2						小沢田 正	
フラクチャ・コントロール	2	2						飯塚 博	
Numerical Methods for Analysis of Dynamic Stability Problems	2	2						Langthjem	
計算材料科学特論	2		2					上原 拓也	
微細加工と熱流体工学	2		2					鹿野 一郎	
ロボット応用工学特論	2	2						水戸部 和久	
空間リンク機構設計特論	2	2						南後 淳	
知的CADシステム論	2	2						大町 竜哉	
知能ロボティクス特論	2		2					妻木 勇一	
先端ソフト&ウェット材料特論	2		2					古川 英光	
マイクロナノ機械工学	2		2					峯田 貴	
エコデザイン論	2		2					近藤 康雄	
磁気熱流体工学	2		2					赤松 正人	
光集積センシング特論	2	2						西山 宏昭	
工業材料加工技術特論	2	2						宮 瑾	
気液二相流特論	2	2						幕田 寿典	
機械システム工学研究計画	0								
機械システム工学特別計画研究	2								
機械システム工学特別教育研修	0								
機械システム工学特別演習B	0								
機械システム工学特別実験B	4					_	_		

⁽注) 30年度及び31年度の「開講期及び週時間数」は、29年度に倣うものとする。

機械システム工学専攻 授業科目の内容

機械ンステムエ子専攻	技未科目の内容	
授業科目名	授業科目の内容	担当教員
大変形非弾性力学 Mechanics of Large Inelastic Deformations	非弾性(塑性,粘塑性)的に大きな変形を呈する物質の力学的挙動のモデル化について論じる。具体的な材料としては、単結晶金属、多結晶金属、アモルファスポリマーを対象とする。テンソル代数を用いた厳密なモデル化を示し、さらにそれらの数値シミュレーション技法への導入方法を講義する。	教授 黒 田 充 紀
スマートマテリアルの 構造・変形・機能 Structure, Deformation and Function of Smart Materials	形状記憶合金, 圧電素子といった機能性材料は, 材料が持つ機視的な構造により, その変形・機能を大きく変化させる。本講義では, 固体材料のなかでも特にユニークな性質を持つ機能性材料に焦点を絞り, これら材料の微視構造と巨視的に生じる変形・機能特性の相互関係に関して詳細に述べる。また, マクローメゾレベルで構造を作り出すことで, 飛躍的にその性能を改善することができる技術をいくつか紹介していく。	准教授村 澤 剛
知的流体情報学 Smart Fluids Informatics	流体のあらゆる信号,静止画像,動画像等の中に隠れた乱流現象の本質を時間一空間ースケールにおいて抽出する知的情報処理技術として,ウェーブレット解析技術,知的可視化技術,粒子画像流速測定技術(PIV)を講義する。さらに,その最近の応用成果と動向について論じる。知的情報処理はあらゆる分野に応用でき,次世代に期待される最新の技術である。	教授 李 鹿 輝
流体科学特論 Advanced Fluid Science	流体力学は、古典的な科学理論の一つであるが、近年も、コンピュータを用いた数値計算の発達に伴って、非線形力学分野のソリトン、カオス、フラクタルのような新しい概念の誕生にも関わり続けている。本講義では、そのような流体科学の近年の成果を概説するとともに、最近のトピックスについても紹介する。	准教授 篠 田 昌 久
機能情報計測制御特論 Functional and Biomechanical Information Engineering	生体の細胞、組織、臓器、個体各レベルの機械的な機能情報の抽出、計測、制御とこれらを利用した生体センシングシステムの構築、さらにその医用センシングへの応用について講義する。	准教授 秋 山 孝 夫
熱と物質移動の シミュレーション技法 Numerical Methods of Heat and Mass Transfer	コンピュータによる熱と物質移動のシミュレーション技法を,自然対流・強制対流熱伝達,移流・拡散を伴う物質移動,気液二相流,固気二相流,蒸発と化学反応を伴う流れなどの問題に応用する方法論について講ずる。	准教授 中 西 為 雄
燃焼科学特論 Advanced course of combustion science	予混合/非予混合火災における化学反応機構や火災構造解明のための各種計測法や数値計算手法について解説する。さらに、様々な燃焼促進機構や燃焼混合学などに関する最新の話題についても論ずる。	准教授 奥 山 正 明
振動制御工学 Engineering Dynamics and Control	自然界から人工構造物にまで及ぶ、多種多様な振動現象の 把握と解析法について広く概観する。工学的応用として、 これらのピエゾアクチュエータなどによる制振・制御・ア クティブ利用について論ずる。さらに、生体軟組織体のダ イナミクス及び動力学的物性値に基づく病変診断法およ び再生活性化法について講義する。	教授 小沢田 正

授業科目名	授業科目の内容	担当教員
フラクチャ・コントロール Fracture Control	電子デバイスのような微細高密度システム等に使用される金属・セラミックス・高分子等の先端材料の強度と破壊のメカニズムについて講義する。さらに、それらを用いて製作される部材における破壊進展のコントロールとその評価法について論じる。	教授 飯 塚 博
Numerical Methods for Analysis of Dynamic Stability Problems	The course aims at giving a solid understanding of the most important methods used in numerical solutions of engineering problems, with focus on dynamic stability of structures and fluid-structure interaction problems.	准教授 Mikael A・ LANGTHJEM
計算材料科学特論 Advanced Computational Materials Science	工学製品の開発・設計過程においては、計算機シミュレーションが不可欠となっているが、材料そのもののもつ特性や力学挙動についても、計算機シミュレーションによって予測・評価することができる。例えば、分子動力学法では、原子個々に対して、運動方程式を記述し、それを数値的に解くことによって原子の運動を追跡し、その結果から様々な特性が導かれる。このように、原子の構造、結晶構造、転位、欠陥、相変態などの微視的・材料科学的な理論に基づき、計算機シミュレーションを行うことによって巨視的な材料の特性を予測、評価する手法が計算材料科学である。本講義では、分子動力学法のほか、モンテカルロ法、セルオートマトン法、フェーズフィールド法など、様々な手法の理論、特徴、アルゴリズム等について講義するとともに、最先端の実用例を紹介する。	教授 上 原 拓 也
微細加工と熱流体工学 Micro Manufacturing & Thermal and Flud Engineering	近年、半導体構造分野では三次元エッチングやスパッタリングによりガラス基板やシリコン基板上に数十 μ mの大きさの振動子やモーターが実現できるようになってきた。この技術は、電気(電子)部品の製造技術が始まりとなって、微細加工技術の発達で生まれた極小機械の総称として MEMS (Micro Electro Mechanical System)と言われている。本講義では、この MEMS 技術を熱流体工学に応用したマイクロポンプや超小型熱交換器などのマイクロマシンについて講義を行う。	准教授
ロボット応用工学特論 Advanced Robotic Systems	マニピュレータの機構と運動特性、力制御、組立システムと作業のコンプライアンス、挿入・はめ合い作業、多指グリッパと把持動作、ロボット用センサ、バリ取り作業、及び各種ロボット応用システムに関する先端的重要技術分野をトピック的に取り上げ講義する。	教授 水戸部 和久

授業科目名	授業科目の内容	担当教員
空間リンク機構設計特論 Advanced Design of Spatial Link Mechanism	ロボットや等速継手,自動車用車輪懸架機構は空間リンク機構に分類され、剛体案内や動力の伝達を行う機構として設計される。平面リンク機構に分類される機構であっても、実際に製作する場合には、その構成要素が同一平面上に存在することは稀であり、軸受等のガタを考慮するならは、その構成要素は空間運動を行うことになり、厳密には空間リンク機構としての解析手法が必要となる。理論的に自由度が存在しても実際に滑らかな運動を創成するためには機構の構成部品を介しての力の伝達等を検討しなければならない。この分野は、高精度な加工技術の要求の高まりとともに、その要求度が増している。空間内でのリンクの運動の表記法を紹介し、部品形状のもつ誤差が、機構の運動に与える影響や機構の力等の伝達特性の評価方法について解説する。	准教授
知的CADシステム論 Intelligent CAD System	機械設計問題について考察し、機械設計問題の特徴を抽出する。次いで、人間の知識を積極的に利用する知識工学の見地から、設計知識の表現方法、知識の利用方法、設計を自動化するシステムの構築方法について解説し、知的な設計支援システム開発の課題について講義する。	准教授 大 町 竜 哉
知能ロボティクス特論 Advanced Intelligent	ロボットの知能化を考える場合,人間との関わりを熟慮する必要がある。すなわち,人間ーロボット系において,システムの最大のパフォーマンスを引き出すために,人間とロボットの役割分担がどうあるべきかを考えなくてはならない。このような考えはロボットに限らず,航空機や原子力発電所などの機械システムにおいても重要である。本講義では,シェアドコントロールやスーパーバイザリーコントリールといった,テレロボティクスの中で発展してきた知能化のための設計思想について詳述する。また,これらの設計思想が様々な機械システムにおいても活用されていることを示し,ヒューマンインタフェースと自動化の設計論を論じる。	教授 妻 木 勇 一
先端ソフト&ウェット 材料特論 Advanced Soft and Wet Materials	われわれの身体を構成する生体組織は、60~80%もの 多量の水を含みながら、丈夫で優れた力学機能と高次の生 体機能を同時に実現している究極のソフト&ウェット材料 である。生体組織にみられる複合構造や階層性を模倣する ことで実現される、先端的なソフト&ウェット材料の研究 開発に関する現状と今後の展開について解説する。	教授古川英光
マイクロナノ機械工学 Micro Nano Mechanicak Engineering	MEMS (Micro Electro Mechanical Systems) センサ, アクチュエータ, マイクロ・ナノロボティクス, およびこれらの基盤となるマイクロ・ナノメカニカル機構の設計論と微細加工プロセスについて講義する。	教授 峯 田 貴
エコデザイン論 Environmental Conscious Design and Manufacturing	製品開発の全ての段階(原料の調達から、モノの製造・販売・使用を経て再資源化。廃棄処理に至るまでの過程)で環境を配慮し、製品のライフサイクルを通じての環境影響を最小限に抑えるための製品設計について解説する。環境と製品設計を複雑すぎない方法で結びつけるためのアプローチとして、1997年に国連環境計画(UNEP)が指針化した(1)持続可能な発展、(2)クリーナープロダクション、および(3)ライフサイクルアプローチについて論じる。	教授

授業科目名	授業科目の内容	担当教員
磁気熱流体工学	伝熱工学を基礎とした磁場による熱対流制御に関する講	教授
Magnetothermal Fluid	義を行う。具体的には、閉じた系および開いた系における	赤松正人
Engineering	電気伝導性、常磁性、そして反磁性の磁気熱流体に対する	
	流動特性や熱伝達特性を解明するための基礎	
	方程式、そしてエネルギー方程式の導出方法について講義	
	する。	
	次に、これらの基礎方程式をもとに数値シミュレーション	
	を行うための数値解析法について講義する。数値解析法と	
	して、基礎方程式の無次元化、有限差分法、対流項・粘性	
	項・熱伝導項・圧力項の取扱い、そして可視化技法について講覧されている。	
	て講義する。また、伝熱工学の古典問題である	
	Rayleigh-Benard問題とRayleigh-Benard条件下における 磁気熱対流問題を通して理解を深める。	
光集積センシング特論	近年の微細加工技術の進展に伴い,材料表面に形成した微細	准教授
Integrated phtonic	構造による様々な光制御が可能となってきた。これらの手法	西山宏昭
Sensing	は、微小空間に光エネルギーを圧縮し得るため、超高感度光	
	センシングや、DNA などのナノマニピュレーションへの応	
	用が進められている。本講義では、ロボティクスやバイオ、	
	エネルギー分野への応用が進められている。本講義では、ロ	
	ボティクスやバイオ、エネルギー分野への応用を念頭に、こ	
	れら光操作の基盤となる光波結合論の概要を述べると伴に、	
	微小空間での光センシング/マニピュレーション原理に関	
	して論じる。また、微細構造形成に必要なリソグラフィや最	
	先端のレーザープロセッシングによる3次元構造化技術,ナノインプリントプロセスによるその量産化についても紹介	
	ブインブリンドブロビスによるその重度化についても紹介 する。	
	人類の歴史上、新たな素材や材料の登場は、われわれの生活	助教
Advanced Processing	に大きな変化をもたらしてきた。たとえば、青銅器や鉄器の	宮 瑾
Technologies of	登場により、それまでの石器に頼っていた生活が一変した。	
Engineering Materials	近年では、プラスチック、ゴム、セラミックなどの登場によ	
	り、私たちの生活は大きく様変わりした。	
	さらに、最近では、より強い合金や、軽くて強い炭素繊維、	
	青色発光ダイオード, リチウムイオン電池, ネオジム磁石な	
	ど、さまざまな新材料によって新たな工業製品が生みださ	
	れ、私たちの生活はより便利により快適になってきた。	
	材料から製品を製造するには、必要な形状に加工する加工技	
	術が非常に重要である。伝統的に切削、鋳造、圧延、押出、	
	射出、密着、溶接などの加工技術があるが、「"ものづくり"	
	における革命を起こす」とまで言われている3Dプリンティ	
	ング技術も驚異的なスピードで進化している。	
	工業材料としては金属材料、高分子材料と複合材料を取り上	
	げ、伝統的な加工技術から最先端の3Dプリンティング技術	
	まで、加工技術の歴史、現状と今後の展開およびその原理に	
	ついて講義する。	

授業科目名	授業科目の内容	担当教員
気液二相流特論 Bubble Dynamics and Engineering	物質の複数の相が混ざり合った流れは混相流と呼ばれ、自然現象としては降雨や降雪現象、工業的には粉体輸送、気泡塔、インクジェットなどをはじめとして一般にも広く見られる流れである。特に、気体-液体が混じった流れである気液二相流は、ボイラー・熱交換器などのエネルギー機器や、エンジンなどの内燃機関をはじめ幅広く応用され、工業的にも極めて重要な流れである。その反面、単相流や他の二相流(固気二相流や固液二相流)とは異なり、流れの構造は極めて複雑で取り扱いが難しい。例えば、気液界面の局所変形・界面の滑り・膨張収縮・気体の溶解など、固体粒子や液滴の場合にはほとんど無視できる事象を考慮する必要があり、更に多くの気泡が存在する場合の流れについては、流動様式のパターンマッチングとモデル化が重要となってくる。本講義ではこの気液二相流の基本的な事項(基礎式・パラメータなど)について、単相流や固気二相流や固液二相流との類似性・相違点を踏まえながら説明するとともに、実際の応用事例としてマイクロバブルなどを中心とした最新の応用研究事例についても取り上げながら解説する。	准教授幕 田 寿 典

ものづくり技術経営学専攻(MOT専攻) カリキュラム

ものづくり技術経営学専攻 授業科目及び単位数

	単		開講	期及で	が週時					
授業科目名	位数		年度		30年度		年度	担当教員	備考	
		前期	後期	前期	後期	前期	後期			
経営・管理工学特論	2	2						兒玉,野田, 柊	英語可	
イノベーション特論	2		2					田中	英語可	
成長企業特論	2		2					兒玉, 柊	英語可	
市場分析特論	2		2					兒玉	英語可	
政策モデル特論	2	2						野田・高澤		
材料強度学特論	2		2					飯塚		
食品成分制御特論	2	2						野田	英語可	
地域技術ビジョン演習B	4									
ものづくり技術特別演習B	0									
ものづくり技術経営学研究計画	0									
ものづくり技術経営学特別計画研究	2									
ものづくり技術経営学特別教育研修	0									

⁽注) 30年度及び31年度の「開講期及び週時間数」は、29年度に倣うものとする。

ものづくり技術経営学専攻 授業科目の内容

授業科目名	授業科目の内容	担当教員
経営・管理工学特論	ものづくり企業の経営を行う上で必要となるマネージメ	教授
Management and	ント、経営戦略、リーダーシップ論、人事管理、リスク管	兒玉直樹
Administration	理等に関して、その方法論や実践に関する研究を行う。	准教授
Engineering		野田博行
		柊 紫乃
イノベーション特論	企業にとっての重要な活動目的は顧客の創造である。将来	教授
Innovation Management	の顧客の創造にイノベーションは欠かせず、また、高い利	田中 陽一郎
	益率を維持するためにもイノベーションは重要である。こ	
	こでは、イノベーションの機会発見法と、イノベーション	
	のための着想法ならびに発想法を探求する。	
成長企業特論	成長企業の要因を明らかにするため、その成長していく過	教授
Case Study of Growing	程での、企業内部、外部の経営リソースの活用手法に関す	兒玉直樹
Companies	る成長企業実例を基にして教育・研究を行う。	准教授
		柊 紫乃
市場分析特論	技術シーズからの新商品開発や、既存商品の価値を高める	教授
Marketing Analysis	ためにも、顧客の価値観や真の欲求を把握することが重要	兒玉直樹
	である。価値創成の方法論を事例分析等を基に考察する。	
政策モデル特論	地域における企業や組織が一体となって、地域の発展に向	准教授
Innovation Policy	けた取組が各地で展開されている。それらの施策を,地域	野田博行
	のリソースから戦略的マネージメントとして実行する手	助教
	法について研究する。	高澤由美
材料強度学特論	ものづくりに不可欠な材料選定法や耐久性評価法等の光	教授
Advanced Strength and	学的手法に関する基本的な視点と、その分野における現在	飯 塚 博
Fracture of Materials	の最先端手法について講義する。	
食品成分制御特論	食品には、三大栄養素、ミネラル、ビタミン、機能性成分	准教授
Control of Food	等が含まれる。これらの加工食品に含まれる量は農産物原	野田博行
Composition	料の生育条件、加工プロセスにより大きく変動する。しか	
	しながら,加工プロセスにおいて厳密な成分濃度管理はコ	
	スト的にも困難である。そこで、個々の加工プロセスの栄	
	養成分等の変動要因および変動を抑えるための手法につ	
	いて教育・研究を行う。	

Ⅲ 博士課程教育リーディングプログラム 「フロンティア有機材料システム創成 フレックス大学院」コース (博士課程5年一貫コース)

1. フロンティア有機材料システム創成フレックス大学院の特色と教育目標

1-1 背景と特色

「博士課程教育リーディングプログラム」は、優秀な学生を産学官にわたりグローバルに活躍するリーダーへと導くため、産・学・官の参画を得つつ、専門分野の枠を超えて博士課程前期・後期一貫した大学院教育を実践する、新しい大学院の形成を推進する事業である。

有機分子やポリマーといった有機材料は、数十年にわたる我が国主導の研究展開によって優れた機能の付与が可能となり、有機半導体や有機発光素子、有機太陽電池等が次々と実現されるなど、従来なかった夢の万能材料へと成長しつつある。有機材料の特性を最大限に活用することで、環境に優しく、フレキシブル性に富み、情報化社会で活用される新たな付加価値を持つシステムを創成することが可能となる。その実現には、有機材料分野に関わる様々な物理・化学・生物学的現象を分子レベルのナノスケールから組織化されたマクロスケールまで階層を超えて深く理解した上で、複雑なシステムを目的にあわせて構築・制御する必要がある。そのため新たな学問領域として「フロンティア有機材料システム」分野を創出し、全く新規な発想から有機材料システムに関する「もの・システムつくり」を実現できる工学的な能力をもつ人材など、本研究分野を多方面から牽引することのできる人材の育成が求められている。

本学はこれまでに、グローバル化を意識し価値創成に主眼をおいた実践教育において高い成果を上げつつある。この取り組みをさらに発展させるため、本学の大学院教育において、有機材料システム分野に新たな価値を創成できる『創造性』と、本分野をグローバルに牽引できるグローバルリーダーとしての『主体性』を合わせもつ人材育成を教育目標に掲げることを特色とした、博士課程5年一貫の「フロンティア有機材料システム創成フレックス大学院」(略称:フレックス大学院)コースが開設された。

1-2 教育目標

本コースは、産学官にわたり活躍する以下の2つの能力を兼ね備えた「フロンティア有機材料システム分野」創成に挑戦する「グローバルリーダー」人材を育成する。

I 「フロンティア有機材料システム分野」創成に挑戦する創造性

「フロンティア有機材料システム分野」創成に挑戦する創造性の修得のため、以下の2つの資質を養成する。

I-1 有機材料工学を主とし、電気電子工学・システム工学の基盤知識を備えた高度な専門性

本学は、基礎から応用まで多岐にわたる学問および教育を展開しており、有機材料や装置の開発からシステム設計に至る「入口から出口まで」の広い分野に対して、教育研究を推進してきた。その結果、教育研究を目指す「有機エレクトロニクス研究センター」、実用化開発を目指す「有機エレクトロニクスイノベーションセンター」、地球にやさしいものづくりの促進を目指す「グリーンマテリアル成形加工研究センター」など、これらの分野で世界をリードする教育研究開発拠点が構築されており、有機材料システム分野の全学体制での教育研究環境が整っている。本コースでは、いずれかに有機材料システムを専攻するように主専攻と副専攻の2分野を選択、かつ、修得することにより、多岐にわたる分野の知識を縦横に駆使できる高度な専門性を持つ人材、いわゆる π 型人材を養成する。

I-2 科学的視点と経済的視点、ミクロな視点とマクロな視点などの複眼的思考力と価値創成実践力 博士課程教育では、専門知識を身につける教育・研究に主眼が置かれてきた。これからのグローバル 社会で活躍するためには、各専門分野の知識だけではなく、それらの周辺分野、および、経済や経営的 側面の知識も要求される。本コースでは、これらの教育を通して自ら新しい価値を創成していくための 価値創成実践力を兼ね備えた人材を養成する。

Ⅱ 「グローバルリーダー」としての主体性

「グローバルリーダー」としての主体性の修得のため、以下の2つの資質を養成する。

Ⅱ-1 国際交渉に臨めるグローバル企画・コミュニケーションカ

経済のグローバル化が進み、材料・商品が世界レベルで流通するようになった現在、ものづくりの多様化、技術の高度化が大きく進んでいる。これが市場競争の激化に拍車をかけ、商品の差別化、開発のスピード化を追い求める傾向が世界レベルで進んでいる。このような中で、標準化はものづくりにおいて重要であり、フロンティア有機材料システム分野で標準化を勝ち取ることのできるリーダーの育成が求められている。このためには、製品の企画力と、コミュニケーション能力が必要不可欠である。本プログラムでは、これらの能力を兼ね備え、標準化に必要不可欠な差別化・高付加価値化を念頭に、フロンティア有機材料システム分野を開拓できるグローバルリーダーを養成する。

Ⅱ - 2 エネルギーや環境に対する高い問題意識と地球規模の福祉増進を目指す未来志向の使命感

21世紀において、新たな付加価値を持つシステムを創成し、産業化していくためには、地球環境の変化やエネルギーなどのグローバルな問題を常に理解しながら、イノベーションを進めていく必要がある。そのため、専門的な知識に加えて、エネルギーや環境、地球規模での福祉増進を意識した俯瞰的な知識をもった人材を養成する。

1-3 コースの特色

- ・学業に専念するための経済的支援を受けることができる。
- ・主専攻・副専攻制度により、主・副いずれかの専攻において「有機材料システム分野」を修得することが求められる。
- ・博士課程 5 年一貫コースであり、 $1\sim 2$ 年次に在学する学生は修士論文審査に代えてQE (Qualifying Examination:博士課程研究基礎力試験)に合格することで 3 年次に進級することができる。
- ・3~5年次に在学する学生が本コースを修了するには、各自の主専攻での博士論文の審査及び最終試験、および、本コース独自のECE(End-of-Course Examination:フレックス大学院修了試験)に合格することが求められる。このことにより、研究力に加えて、「創造性」と「主体性」の2つの能力を獲得したことが保証される。

2. 履修方法

2-1 主専攻・副専攻

本コース学生は、入学した研究科の自ら所属する専攻を主専攻とし、入コースした年度の9月までに以下に従い副専攻を決定する。理工学研究科の専攻を主専攻とする学生は、副専攻として有機材料システム専攻を選択し、主専攻が有機材料システム専攻の場合、副専攻は理工学研究科のいずれかの専攻から選択すること。決定した博士前期課程における主専攻・副専攻を5年一貫教育における履修の母体とする。

	有機材料システム研究科		理工学研究科								
1•2年次	有機材料 システム専攻	物質 化学 工学専攻	バイオ 化学 工学専攻	応用生命 システム 工学専攻	電気 電子 工学専攻	情報 科学 専攻	機械 システム 工学専攻	ものづくり 技術 経営学 専攻			
	QE(Qualifying Examination:博士課程研究基礎力試験),進級										
3·4·5 年次	有機材料 システム専攻	物質 化学 工学専攻	バイオコ	□学専攻	電子情報	工学専攻	機械 システム 工学専攻	ものづくり 技術 経営学 専攻			
	ECE(End-of-Course Examination:フレックス大学院修了試験), 学位審査										

ケース1:主専攻が有機材料システム専攻の場合,副専攻は理工学研究科の専攻から選択すること。 ケース2:主専攻が理工学研究科のいずれかの専攻の場合,副専攻は有機材料システム専攻を選択すること。

2-2 指導教員グループ

本コース学生には、入コースの際、博士後期課程の学生と同様に授業科目の履修、博士学位論文の作成等の指導のために、主専攻の博士後期課程担当教員の中から主指導教員が定められる。主指導教員は、入コース年度の10月までに、学生の研究計画に基づき、専門分野が偏らないように配慮し、主専攻・副専攻を含め3名以上の指導教員グループを組織する。

2-3 プログラム授業科目

【1~2年次】

授業科目には、各研究科の講義科目、(有機材料システム専攻は「専門科目」及び「グローバル・実践科目」)、特別演習A及び特別実験A(ものづくり技術経営学専攻(MOT専攻)は「研究論文特別演習」)に加えて、本コース独自の価値創成キャリアデザイン科目がある。

- (1) 価値創成キャリアデザイン科目 標記科目の履修により、将来価値創成グローバルリーダーとして必要不可欠な「自ら考え行動する力」を身につける。
- ※ 以下の事項については、平成29年度大学院理工学研究科学生便覧(工学系)もしくは平成29年度大学院有機材料システム研究科学生便覧の当該項目に準じる。
- (2) 講義科目(有機材料システム専攻は「専門科目」及び「グローバル・実践科目」)
- (3) 特別演習 A
- (4) 特別実験A(ものづくり技術経営学専攻(MOT専攻)は「研究論文特別演習」)

【3~5年次】

授業科目は、各研究科の講義科目(有機材料システム専攻は「専門科目」及び「グローバル・実践科目」)、特別演習B、研究計画、特別計画研究、特別教育研修及び特別実験B(MOT専攻は「地域技術ビジョン演習B」)、及び本コース独自の価値創成キャリアデザイン科目である。

(1) 価値創成キャリアデザイン科目

標記科目の履修により、将来価値創成グローバルリーダーとして必要不可欠な「コミュニケーション能力、研究能力」を身につける。

- ※ 以下の事項については、平成29年度大学院理工学研究科学生便覧(工学系)もしくは平成29年度大学院有機材料システム研究科学生便覧の当該項目に準じる。
 - (2) 講義科目(有機材料システム専攻は「専門科目」及び「グローバル・実践科目」)
 - (3) 特別演習 B
 - (4) 研究計画 (プロポーザル) (5) 特別計画研究 (6) 特別教育研修
 - (7) 特別実験B(ものづくり技術経営学専攻(MOT専攻)は「地域技術ビジョン演習B」)

各専攻の授業科目及び単位数を、大学院理工学研究科学生便覧(工学系)および大学院有機材料システム研究科学生便覧の所定の表に示す。

講義科目については、一部を除き所属の研究科を超えて自由に履修することができる。

2-4 履修申告

- (1) 入コース初年度1学期に、キャリアデザインセミナーを必ず履修すること。
- (2) 学期始めに主指導教員及びプロジェクト教員と相談し、履修しようとする授業科目を決定し、履修登録の手続きを行うこと。
- (3)3~5年次の履修については、3年次の年度に配布される便覧に従い博士後期課程用の履修届を 提出すること。

2-5 履修基準

【1~2年次】

1~2年次で必要な最低修得単位数は、各専攻科で定める平成29年度大学院理工学研究科学生便覧(工学系)もしくは平成29年度大学院有機材料システム研究科学生便覧の博士前期課程履修基準表に示された主専攻で修了に必要な30単位以上(ものづくり技術経営学専攻のとうほくMITRAIコースは、40単位以上)に加え、価値創成キャリアデザイン科目からの4単位である。すなわち、最低修得単位数は34単位(ものづくり技術経営学専攻のとうほくMITRAIコースは、44単位)である。ただし、選択講義科目として副専攻の講義科目(副専攻が有機材料システム専攻の場合は専門科目)から4単位以上を修得すること、また、主専攻以外の講義科目を合わせて、10単位以上(情報科学専攻は8単位以上、ものづくり技術経営学専攻のとうほくMITRAIコースは22単位以上)を履修すること。

※有機材料システム専攻を主専攻とするコース生は、自専攻講義科目として修得が求められている 10単位について、価値創成キャリアデザイン科目4単位以上修得することを条件として有機材料システム専攻のグローバル実践科目の中から修得が求められている4単位以上の修得は、有機材料システム専攻の専門科目の中からの修得に代えることができる。

【3~5年次】

3~5年次で必要な最低修得単位数は、主専攻が理工学研究科の専攻の場合、平成29年度大学院理工学研究科学生便覧(工学系)の博士後期課程履修基準表に示された主専攻で修了に必要な科目から12単位以上に加え、価値創成キャリアデザイン科目から6単位、合計18単位以上である。主専攻が有機材料システム専攻の場合は、平成29年度大学院有機材料システム研究科学生便覧の博士後期課程履修基準表に示された主専攻で終了に必要な科目から18単位以上に加え、価値創成キャリアデザイン科目から6単位、合計24単位以上である。

2-6 QE(Qualifying Examination:博士課程研究基礎力試験)

本コースに在籍し、 $1 \sim 2$ 年次履修基準の授業科目を修得する見込みがあり、かつ、次の要件を満たし、研究指導を受けた学生は、QE を受けることができる。

QE を受ける要件は、①英語による国際学会発表1件を発表済みもしくは英文予稿1件を投稿済みであること、②論文1件(英語を推奨し、査読付プロシーディングも認める)を投稿済みであることとする。要件①および②ともにQE を受ける学生が筆頭著者であることが必要である。

要件の確認は、 QE を受ける年度の11月末に行う。

QE は、大学院理工学研究科博士前期課程米沢地区委員会もしくは大学院有機材料システム研究科委員会が選出する QE 審査委員が行う。

1~2年次の履修基準を満たし、所定の単位を修得の上、QE に合格した学生は、修士の学位を受けずに3年次に進級する。修士論文審査を受け、博士前期課程を修了すると、本コースの3年次に進級できないので注意すること。

2-7 博士論文の審査及び最終試験

QE に合格し3年次に進級した後,本コースにおいて3~5年次の課程を履修し,履修基準の授業科目を修得する見込みがあり,必要な研究指導を受けた学生は,論文計画の審査に合格した後に,博士論文を作成し,審査申請することができる。審査申請は,主専攻の審査手順に従う。

提出された論文は、大学院理工学研究科委員会もしくは大学院有機材料システム研究科委員会が選出する論文審査委員により審査される。最終試験は、論文提出者が各専攻開催の公聴会において学位論文の内容を発表する際に、関連する事項に対して論文審査委員が口頭又は筆答で試問を行う形で実施される。

2-8 ECE (End-of-Course Examination:フレックス大学院修了試験)

フロンティア有機材料システム創成フレックス大学院自己評価報告書(所定の様式)を作成しフレックス大学院教育ディレクターから承認を得た後に,博士論文の審査と最終試験の審査を申請することができ,かつ,履修基準の価値創成キャリアデザイン科目の単位修得とワーク修了の見込みがある学生は,ECE を受けることができる。

ECE は、フレックス大学院プログラム開発・運営委員会が選出する ECE 審査委員が行い、本コースの教育目標に掲げる能力を身につけていることを、口頭試問を行う形で実施される。

2-9 修了要件

本コースの修了の要件は、本コースにおいて $1\sim2$ 年次の課程を履修し QE に合格した後 $3\sim5$ 年次の課程を履修して、所定の単位を修得し、かつ、必要な研究指導を受けた上、博士論文の審査及び最終試験、ECE に合格することである。本コースの課程を履修できる期間は、 $1\sim2$ 年次は2年、 $3\sim5$ 年次は3年とし、これを越えることは認められない。

特に優れた研究業績を上げた者は、修了までの期間の短縮を認めることがある。

2-10 学位の授与

本コースを修了した者には、博士(工学)の学位が授与され、本コースを修了したことが付記される。

2-11 留年・休学または修了が困難となった場合の処置について

留年・休学が確定した学生又は指導教員グループの教員が修了困難と判断する学生は、やむを得ない事情を除き、本コースから離脱する。この場合、リーディングプログラムによる経済的支援を速やかに中止する。

2-12 その他

本コースの学生は、原則として就労を行うことはできない。ただし、TA(ティーチングアシスタント)、RA(リサーチアシスタント)、および、インターンシップにおける就労については、山形大学大学院における博士課程教育リーディングプログラム「フロンティア有機材料システム創成フレックス大学院」奨励金規程に従うものとする。

3. カリキュラム

価値創成キャリアデザイン科目/ワーク及び単位数表

		224	開講期及び週時間数											
拉米(1) 口 力	開講	単位		下次		手次		手次		F次		手 次	+17 1/1 1/4/4 17	/±±: -±≠.
授業科目名	形態	位数		年度		年度		年度		年度		年度	担当教員	備考
		数	前期 後期		前期後期		前期	前期後期		前期 後期		後期		
キャリアデザイン セミナー Career Designing Seminar	講義	2	2		[2]								神戸士郎 他	必修
価値創成 プロジェクト Innovative Systems Co-creation Project	実習	1	1	1	[1]	[1]							古川英光 他	必修
実践型 PBL 教育 I Project-Based Learning(I)	実習	1				2							プロジェク ト教員 他	必修※
実践型 PBL 教育 II Project-Based Learning(II)	実習	2					4	[4]	[4]	[4]	* [4]	* [4]	主指導教員 副指導教員 神戸士郎 他	選択
グローバルコミュニ ケーション演習 Exercise for Global Communication	演習	2					2		[2]		* [2]		高橋辰宏 非常勤講師 他	必修
フレックス大学院 国際共同研究 (長期海外イン ターンシップ) International Internship	実習	4					8	[8]	[8]	[8]	*	*	高橋辰宏 主指導教員 プロジェク ト教員 他	必修
フレックス大学院 シンポジウム/ セミナーI International Symposia / Seminars I	ワーク	0	1	1									松葉 豪 古川英光 他	必修
フレックス大学院 シンポジウム/ セミナーII International Symposia / Seminars II	ワーク	0			1	1							松葉 豪 古川英光 他	必修※
My ポータルサイト My Portal Website	ワーク	0	1	1	1	1	1	1	1	1	1	1	古川英光 他	必修

⁽注) [] 内の数字は、該当科目の所定の開講年度以降の開講予定週時間数を示す。

[※] この授業科目は29年度の履修を認める場合がある。

^{*} この授業科目は科目変更を行う場合がある。

価値創成キャリアデザイン科目/ワーク(単位無し)の内容

授業科目/ワーク名		担当教員
キャリアデザイン セミナー Career Designing Seminar	自らの希望するキャリアを明確化し、大学院での取り組みを効果的なものとすることを目的とする。大学院修了後の具体的な進路を受講生各自が想定し、そのために必要となる能力・知識・技術・専門などを検討してから、2年間または5年間の履修計画と学習計画を立てる。大学院で履修する科目だけに限らず、国内外での活動内容・研究内容を包含した形で、大学院修了後に自分が持つべき学術的知識や技術、習得すべき人間力を把握し、具体的なキャリアをデザインする。	神戸士郎他
価値創成プロジェクト Innovative Systems Co-creation Project	価値創成を求められている分野で活躍することを想定し、「新たな分野の創成に挑戦する上で必要な研究力・創造性」を養う講義である。具体的には、プロジェクトマネージメント及び、プレゼンテーションの演習を通して、研究を推進し発表する能力の獲得を目指す。	古川英光他
実践型 PBL 教育 I Project-Based Learning (I)	大学院修了後に、学生は大学や企業などで専門知識を活用してグローバルに活躍することが求められる。この実習では実際に学生がプロジェクト先等に赴き、問題解決型の課題に主体的に取り組むことで、社会人として求められる基礎能力を育成する。また問題意識を持って課題解決ができ、チームをマネジメントできる能力と、コミュニケーション能力の形成を図る。プロジェクトに関わることで、理論と実践の間の溝、プロジェクトにおける障壁を理解し、これを乗り越えることができる力と、高い職業意識ならびに自立心・責任感を身につける。さらに技術者・研究者としての自立性(自律性)の育成も目指し、就業体験を通した職業意識の向上と職業観の育成を図る。	プロジェクト 教員 他
実践型 PBL 教育 II Project-Based Learning (II)	より幅広い視野から物事を俯瞰できるように、専門分野の異なるグローバル企業等の研究現場で、実習と情報収集に取り組む。敢えて未知の領域で課題解決に取り組むことにより、文理融合型の知識や他の専門分野の技術・知識を身につける。果敢に物事に挑戦するマインドと探究心、複眼的なものの見方などを涵養する。他の研究チームに所属することで、1つの分野にとらわれない幅広い視野を育成し、他分野の異なる教員や共同研究者などと一緒に学習・研究を行うことで専門の壁を乗り越える。コミュニケーション能力にさらに磨きをかけ、技術と技術の融合、技術の新規性と事業化などの視点を身に付け、これを展開できる能力を身につける。異なる研究や専門性に触れることによって独創的なアイデアを創出したり、新しい手法・方法を見出したり、先進的な計画を立案・実施できるようになることを目指す。	主指導教員 副指導教 郎神 戸 士郎

授業科目/ワーク名	授業科目の内容	担当教員
グローバルコミュニケーション演習 Exercise for Global Communication	研究活動だけに限らず、グローバルな世界を舞台に活躍をするためには、学会やシンポジウム、セミナーなどにおける英語能力のみでなく、国際的な企業交渉や外交交渉などに挑めるような交渉力、調整力、説得力、人を惹きつける力、プレゼンテーション力などが必然的に求められることになる。本演習では、1年次に実践演習として短期海外研修に参加もしくは他の海外研修経験等により実際のグローバルコミュニケーションの有り方を体験するとともに、3年次以降には講義演習形式で各種交渉・商談および国際標準化を成し遂げるために必要な専門用語を学ぶことに加えて、ディベート型学習を通じて交渉力を身につけることを目指す。	高橋辰宏非常勤講師他
フレックス大学院国際共同 研究(長期海外インターン シップ) International Internship	国外の企業・大学等の研究室において研究活動を行うことで、専門分野の更なる強化と拡大を図るほか、国外の文化・社会・価値観を分析・理解する。コミュニケーション能力と研究能力を飛躍的に向上させ、グローバル人材として活動するための実践力を確実に習得する。専門分野への理解を深化させて最先端の技術と理論を知るとともに、世界の研究動向や教育・研究手法を習得する。また異なる文化圏において長期間に渡って滞在して研修を行うことで、異文化適応やグローバルコミュニケーション能力の向上を目指す。	高 橋 辰 宏 主指導教員 プロジェクト 教員 他
(ワーク) フレックス大学院 シンポジウム/セミナーI International Symposia / Seminars (I)	学生同士が協力して、国際シンポジウムや国際セミナーを 企画し開催する。シンポジウム/セミナーの企画・立案・ 運営を学生が行うことで、マネジメント能力を身につけ る。加えて、若手研究者間の国際ネットワークを構築する。 本ワークでは、シンポジウム/セミナーにおける参加、発 表、議論を通じて、プレゼンテーション力と英語力強化を 行う。	松葉 豪 古 川 英 光 他
(ワーク) フレックス大学院 シンポジウム/セミナーII International Symposia / Seminars (II)	学生同士が協力して、国際シンポジウムや国際セミナーを 企画し開催する。シンポジウム/セミナーの企画・立案・ 運営を学生が行うことで、マネジメント能力を身につけ る。加えて、若手研究者間の国際ネットワークを構築する。 本ワークでは、シンポジウム/セミナーにおける企画・立 案・運営を通じて、マネジメント力と英語力を強化する。	松 葉 豪 古 川 英 光 他
(ワーク) My ポータルサイト My Portal Website	所定のホームページを「学生ポータルサイト」として活用し、学生のアクティビティをコンテンツや各人の CV として情報発信し、国際交流やネットワーク形成につなげ、グローバルに活躍するリーダーへと導くワークである。1~2年次には海外研修やインターンシップなどに関するコンテンツ、3~5年次には学会発表や論文発表に関するコンテンツや各人の CV などを作成し、コンテンツの英語化を含めて、グローバルに向けた情報発信の有り方を身につける。	古川英光他

カリキュラムマップ

カリキュラムマップは、本コースで開講される価値創成キャリアデザイン科目が本コースの掲げる学修目標に対してどのような位置づけであるかを示したものである。履修計画を立てる際に、獲得すべき能力について確認し、選択科目を履修する際の判断指標として利用すること。

			1年次	•	•		•		•			
	履修年次 2年次				•		•	•				
3-5年次							•	•	•	•		
授業科目名			キャリアデザイン セミナー	価値創成 プロジェクト	実践型PBL 教育I	フレックス大学 院シンポジウム /セミナーI	フレックス大学 院シンポジウム /セミナーII	マイポータルサイト	実践型PBL 教育Ⅱ	グローバルコ ミュニケーション 演習	フレックス大学 院国際共同研 究(長期海外インターンシップ)	
		開講形態		講義	実習	実習	ワーク	ワーク	ワーク	実習	演習	実習
担当教員				神戸 士郎 他	古川 英光 他	プロジェクト教員 他	松葉 豪 古川 英光 他	松葉 豪 古川 英光 他	古川 英光 他	主指導教員 副指導教員 神戸 士郎 他	高橋 辰宏 非常勤講師 他	高橋 辰宏 主指導教員 プロジェクト教員 他
		単位数		2	1	1	0	0	0	2	2	4
		学修目標		必修	必修	必修	必修	必修	必修	選択	必修	必修
創造性	I-1	気電子工学·	学を主とし, 電 システムエ学 を備えた <u>高度な</u>		0	0		0		0		0
周足工	I-2	ミクロな視点		0	0	0				0		0
244			島める <u>グローバ</u> 1 <i>二ケー</i> ション				0	0	0		0	0
主体性	,,	高い問題意識	・環境に対する <u>載</u> と地球規模の 目指す <u>未来志向</u>	0				0	0			

履修モデル (必要履修単位数)

課程	:	理工学研究科所属コース生		有機材料システム研究科 所属コース生		備考	
	理工学研究科自専攻	1	0				
	理工学研究科他専攻	専門科目			≧4*	10	* 副専攻科目として履修
		専門科目	≧4*	10	≧6		* 副専攻科目として履修
博士前期	有機材料システム専攻	グローバル・実践科目 A (理工系のための実用英語 I・理工系のための実用英語 I・元のための実用英語 I・元のための実用英語 I・元の財産権・グローバルコミュニケーション演習 I)	≧2**		≧2* *	10	**コース生は「グローバル・コミュニケーション演習I」を必ず履修すること
課程		グローバル・実践科目 B (キャリアデザインセミナー・価値創成プロ ジェクト・実践型PBL教育 I・フレックス大学院 シンボジウム/セミナー・マイボータルサイト)					*** コース生は履修できない
	フレックス大学院	キャリアデザイン科目	4	ŀ		4	**** ワーク(0単位)を含む
	自専攻	攻 特別演習A・特別実験A		10		0	
		34		34			
	理工学研究科自専攻	専門科目					
	理工学研究科他専攻	専門科目	6	i	6		
		専門科目					
博士	有機材料システム専攻	グローバル・実践科目 (実践型PBL教育エ・グローバルコミュニケー ション演習エ・国際共同研究)					***コース生は履修できない
課程	フレックス大学院	キャリアデザイン科目	6	i	(6	**** ワーク(0単位)を含む
	自専攻	特別計画研究·特別実験B	6	i	(6	
	日寻以	特別教育研修·研究計画· 特別演習B	単位	なし	6		
		合計	18		24		

【注意】

- * 講義科目は所属の研究科を超えて相互に履修することができる。
- ** 本コース生は、有機材料システム専攻のグローバル・実践科目の「グローバルコミュニケーション 演習 I 」を価値創成キャリアデザイン科目の「フレックス大学院シンポジウム/セミナー I (ワーク)」とセットで履修すること。
- *** 本コース生は,有機材料システム専攻のグローバル・実践科目のうち,以下の科目は履修できない。 博士前期課程:「キャリアデザインセミナー」「価値創成プロジェクト」「実践型 PBL 教育 I」 「フレックス大学院シンポジウム/セミナー」「マイポータルサイト」

博士後期課程:「実践型 PBL 教育 II」「グローバルコミュニケーション演習 II」「国際共同研究」 ****以下のワーク (0 単位) を履修すること。

「フレックス大学院シンポジウム/セミナー I」「フレックス大学院シンポジウム/セミナー II」「マイポータルサイト」

フレックス大学院の履修モデル 理工学研究科所属の場合

	1年次 2年次		3年次	4年次	5年次	
講義	① 講義科目から、主専攻の履修基準に準じ20単位以上(ものづくり技術経営学専攻の価値創成コースは24単位以上、とうほくMITRAIコースは34単位以上) ただし、副専攻として有機材料システム専攻の専門科目から4単位以上を修得すること。また、主専攻以外の講義科目を合わせて、10単位以上(情報科学専攻は8単位以上、とうほくMITRAIコースは22単位以上)を修得すること。なお、有機材料システム専攻で開講するグローバル・実践科目「グローバル・実践科目「グローバル・実践科目「グローバル・実践科目」「グローバル・まな科目」、2単位を必ず履修すること。		⑤ 講義科目から、 に準じ 6単位 以上	主専攻の履修基準		
実習・ワーク	② 価値創成キャリアデザイン科目から 4単位 ★ ★	%1 QE	⑥ 価値創成キャリ ら6単位以上 ⑦ 特別計画研究: 2単位(必修) ⑧ 特別教育研修: 単位なし(必修)			%2 ECE
演習・実験	③ 特別演習A:4単位(必修) ④ 特別実験A:6単位(必修) ただし、ものづくり技術経営学専 攻は研究論文特別演習A:6単位 (必修)		(9 特別演習 B : ≜ (10 特別実験 B : 4 (10)			
研究	国内・国際学会発表 投稿論文執筆		国内・国際	① 研究計画 (プロポーザル) 単位なし(必修) 学会発表、投稿論文報	L ₋	
最低履修単位数	1~2年次最低修得単位数: 合計34単位以上 (①+②+③+④) (とうほくMITRAIコースは 44単位以上)		合計18	年次最低修得単位数: 8単位 以上 ⑥+⑦+⑧+⑨+⑩+	·(II)	

□ フレックス大学院の基準 (実線枠) 「--」 主専攻の基準 (点線枠) ★中間報告会

※1 Qualifying Examination:博士課程研究基礎力試験 ※2 End-of-Course Examination:フレックス大学院修了試験

フレックス大学院の履修モデル 有機材料システム研究科所属の場合

	プレックス大学院の復行 1年次 2年次	- ·	3年次	4年次	5年次	
講 義	① 講義科目から、主専攻の履修基準に準じ20単位以上 ただし、副専攻として理工学研究科のいずれかの専攻の講義科目から4単位以上を修得すること。また、主専攻以外の講義科目を合わせて、10単位以上を修得すること。 なお、グローバル・実践科目から、4単位以上を履修すること。 ただし、「グローバルコミュニケーションI」2単位を必ず履修すること。 ただし、「グローバルコミュニケーションI」2単位を必ず履修すること。 ただし、「グローバルコミュニケーションI」10単位を必ず履修すること。 ただし、「グローバルコミュニケーションI」10単位を必ず履修すること。 ただし、「グローバルコミュニケーションI」10単位を必ず履修すること。なお、不足の2単位は専門科目から修得してもよい。		⑤ 講義科目から、当 に準じ 6単位 以上	主専攻の履修基準 		
実習・ワーク演習・	② 価値創成キャリアデザイン科目から4単位 ★ ★ ③ 特別演習A:4単位(必修)	%1 QE	⑥ 価値創成キャリ ら6単位以上 ⑦ 特別計画研究: 2単位(必修) ⑧ 特別教育研修: 2単位(必修) ★ ⑨ 特別演習B:21	★		×2 ECE
実験	④ 特別実験 A:6単位(必修)		⑩ 特別実験 B : 4	単位 (必修)		
研究	国内・国際学会発表 投稿論文執筆		国内・国際学	① 研究計画 (プロポーザル) 2単位 (必修) 	論 主 計画 学位論文作成 学位論文 学位論文 学位論文 学位論計 学位論試験	
最低履修単位数	1~2年次最低修得単位数: 合計34単位以上 (①+②+③+④)		合計24章	三次最低修得単位数: 単位 以上 ①+⑦+⑧+⑨+⑩+	(11)	

□ フレックス大学院の基準(実線枠) 「□□」主専攻の基準(点線枠) ★中間報告会 ※1 Qualifying Examination:博士課程研究基礎力試験

※2 End-of-Course Examination:フレックス大学院修了試験

Ⅳ 学生生活案内

学 生 生 活 案 内

1. 学生生活の心得

1-1 自動車・バイクによる通学の自粛

本学部構内への自動車・バイクの乗入れは、騒音による授業等の妨げにもなるため自粛 してください。なお、自動車による通学は駐車場も少ないため、構内駐車許可申請により 特に許可された場合を除き禁止します。

1-2 掲示板

学生への通知・連絡・呼出等はすべて掲示によって行いますので、掲示板は常時注意して見る習慣をつけ、重要な掲示を見逃して自己に不利益な結果を招くことのないよう心がけてください。

● 大学院理工学研究科の掲示板は、5号館1階ピロティに設置してあります。

1-3 交通事故について

本学部(研究科)では、残念ながら学生が当事者となった交通事故が毎年多数発生しており、特に死亡事故等の悲惨な人身事故も毎年数件発生しています。ひとたび事故が起こると学業への支障ばかりでなく、精神的・経済的にも多大な負担が生じます。自動車、バイク等を運転する際は、自己本位の姿勢は捨て、交通ルールを厳守するとともに、無謀な運転は厳に慎み、安全運転を心がけてください。

また、交通事故の当事者となった場合は、被害者側、加害者側の如何にかかわらず、直 ちに事故状況届を学生サポートセンター・学生支援担当に提出してください。帰省先等で 発生した事故についても同様に提出してください。

2. 諸手続について

2-1 学生証について

- 学生証は、学生としての身分を証明する重要なものですから必ず携帯してください。
- 修了、退学、除籍又は有効期間が経過した場合は、直ちに返納してください。
- 学生証を紛失したとき又は使用に耐えなくなったときは、速やかに学生証再発行願を 学生サポートセンター・学生支援担当に提出し、交付を受けてください。

2-2 諸証明書について

証明書は自動発行機によるものを除き、原則として申込日の2日後に交付します。証明書自動発行機による証明書類は、在学証明書、修了見込証明書、成績証明書(博士後期課程学生を除く)、学生旅客運賃割引証、健康診断証明書です。

(1) 学生旅客運賃割引証(学割証)

- 自動発行機により交付を受けてください。
- 年間1人当たりの交付枚数に限度(年間10枚)がありますから有効に使用してください。

- 他人に譲渡したり、不正に使用したりしないでください。
- 乗車券の購入及び旅行の際は、必ず学生証を携行してください。
- (2) 列車の通学証明書(学生サポートセンター学生支援担当:①番窓口) 列車の通学証明書を必要とする者は、学生証を持参し、申し出てください。
- (3) 健康診断証明書

4月の定期健康診断を受診した場合は自動発行機より交付を受けてください。

(4) 成績証明書

博士前期課程の学生は、自動発行機により交付を受けてください。博士後期課程の学生は、諸証明書交付願に所要事項を記入し、申し込んでください。

(5) 修了見込証明書

修了予定年次に入ってから、自動発行機により交付を受けてください。

2-3 休学・復学・退学・除籍について

(1) 休 学

病気その他の理由で2か月以上修学できない場合は、願い出により休学することができます。休学しようとする者は、休学願を保証人連署の上、指導教員(主指導教員)の許可を得た上で提出してください。病気の場合は、医師の診断書を添付してください。

休学期間は1か年以内です。ただし、特別の理由により引き続き休学する場合は、改めて願い出なければなりません。なお、休学期間は通算して、博士前期課程にあっては2年を、博士後期課程にあっては3年を超えることはできません。また、休学期間は在学期間に算入されません。

学期開始の月の末日(前期は4月30日,後期は10月31日)までに休学を許可された場合は、月割計算によって休学する翌月から復学する前月までの授業料は免除されます。したがって、学期開始の月の末日後に休学が許可された者は、授業料は全額納付しなければなりません。

(2) 復 学

休学期間内にその理由が消滅した場合は、復学願を保証人連署の上、指導教員(主指導教員)の許可を得た上で提出してください。なお、休学期間満了に伴う復学の場合には、休学期間満了前に復学届を提出してください。

(3) 退 学

退学しようとする者は,退学願を保証人連署の上,詳細な理由を記入し,指導教員(主 指導教員)の許可を得た上で提出してください。

退学する場合には、その学期に属する授業料は納付しなければなりません。 また、退学する者は学生証を返納しなければなりません。

(4) 除 籍

在学期間が修業年限の2倍を超えた者,病気その他の理由で成業の見込みがないと判断された者は除籍されます。また,授業料の納付を怠り,催促を受けてもなお納付しない者も除籍されます。

3. 授 業 料

3-1 授業料の納入方法

授業料は、次の4つの納付パターンから選択して口座振替により納付していただきます。 この方法は、本学指定の銀行の口座(学生本人または保護者名義)を届け出ていただき、 選択された納付パターンに応じて引き落としを行うものです。各月の引落日は、ホームページを参照してください。 (山形大学ホームページ→キャンパスライフ→学費・授業料 免除・奨学金)

納付パターン

- 1. 年1回払い(1年間分の授業料を4月に振替)
- 2. 年2回払い(前期分は4月,後期分は10月に振替)
- 3. 年10回均等払い(前期分は4~8月,後期分は10月~2月の各月に振替)
- 4. 年10回ボーナス併用払い(年10回払いで,前期分は8月,後期分は1月にボーナス分を加算して振替)

3-2 授業料の免除について

授業料の納付が困難な場合に,願い出により選考の上,前期・後期毎に,その期の授 業料の全額又は半額を免除する制度があります。

経済的理由による免除:経済的理由等によって授業料の納付が困難であり、かつ、学 業成績優秀と認められる者

特別な事情による免除:授業料の納期前6ヶ月(新入学者については1年)以内に置いて、学生の学資を主として負担している者が死亡し、又は学生若しくは学資負担者が風水害等の被害を受け授業料の納

付が困難と認められる場合

授業料の免除に関する諸手続きは、学生サポートセンター学生支援担当で取り扱います。

注意事項

- 申請手続,提出書類,期日等については、その都度掲示により周知しますので注意してください。
- 授業料の免除の願い出をした者は、判定結果が出るまで授業料を納付しないでください。

4. 奨学制度について

4-1 日本学生支援機構(旧日本育英会)

(1) 出願の資格

学業、人物ともに優秀、かつ健康で、経済的理由により修学困難と認められる者

(2) 奨学金の種類と貸与月額

種別							貸 与 月 額
			博	士	前	期	50,000円 又は 88,000円の 何れかを選択する。
第一種	į	博	士	後	期	80,000円 又は 122,000円の 何れかを選択する。	
第	二	÷	博	士	前	期	50,000円 80,000円 100,000円 130,000円
护	<u>→</u> 15	Į	博	士	後	期	及び150,000円のうち,何れかを 選択する。

- (3) 奨学生出願の手続
 - 学生支援担当から申請書等の交付を受け、必要書類を提出した上でインターネットにより入力し、手続してください。
 - 奨学生募集は、掲示により周知しますので期日に遅れないよう願い出てください。
- (4) 奨学金継続願の提出

奨学生に採用された者は、毎年冬に奨学金継続願を提出しなければなりません。 定めた期限までに提出しない者は「廃止」と認定され、貸与が受けられなくなります。

(5) 奨学生の異動届

奨学生に身分上の異動が生じた場合は、速やかに届け出てください。

4-2 その他の奨学団体

地方公共団体等の奨学生募集は、大学を経由するもの以外に、公報などで周知し本人から直接出願させるものなどがあります。募集通知があり次第、その都度掲示しますので注意してください。

5. 保 健

よりよい学生生活の基盤は何といっても健康です。また、意欲的な学業修得の第一条件も心身ともに健康であることに他なりません。それを全うするためには、学生の皆さんが日々心身に留意し、あらゆる機会と施設を利用して、常に自分の健康は自分が進んで保持し、増進するよう心がけることが大切です。

5-1 保健管理室

日常の軽いけがや大学内での正課、課外活動中、又はその他において負傷又は急病等不時の疾病の場合、開室中であればいつでも診療や応急処置を行いますので利用してください。

5-2 健康診断

(1) 定期健康診断

学生の定期健康診断は、学校保健安全法に基づき毎年4月に行い、注意を要するもの については精密検査を実施し、療養に関する注意や適切な助言指導を行っています。

健康は、自分でつくり出すものであるという認識にたって、病気の予防、早期発見のために積極的に健康診断を受診してください。定期健康診断を受診していなければ、健康診断書の発行はできせん。未受診の場合は、進学・就職の際支障を来しますので注意してください。

- (2) 学校医(専門医)による健康相談
 - 内科, 眼科, 精神科の各科目について, 毎月1~2回, 学校医が学生の健康相談に応じています。詳しい日時は, 前もって掲示板に掲示します。
- (3) スポーツ関係者健康診断 対外試合出場学生等に対して, 随時行います。

5-3 学生相談室

心の悩みや学習上の悩み等について気軽に相談してもらうことを目的に学生相談室を設けていますので、問題解決の第一歩として是非利用してください。秘密は厳守します。場所は、保健管理室となっています。

5-4 キャンパス・ハラスメント相談

セクシャル・ハラスメント及びアカデミック・ハラスメント,パワー・ハラスメント等,大学内で起こり得る次のようなハラスメント行為(キャンパス・ハラスメント)は、個人の人権を侵害するものであり、いかなる場合でも許されません。

- ・地位や権限や力関係を利用して、学習、研究等に関する自由と権利を侵害すること。
- ・相手又は周囲の者を不愉快にさせ、学習・研究環境を損なう状況をもたらすこと。
- ・本人が意識しなくとも、相手が「望まない言動」と受け取ること。

キャンパス・ハラスメント防止のためには、お互いの人格を尊重し合う等、ひとりひとりの心構えが最も重要ですが、不幸にも発生してしまった場合には、一人で悩まずに、キャンパス・ハラスメント相談員に相談してください。

6. 学生教育研究災害傷害保険

学生の傷害に対する救済措置として「学生教育研究災害傷害保険制度」が設けられています。これは、全国の大学に学ぶ学生諸君が「互助共済制度」によって災害事故に適切な救済援助を行うものです。詳細については、「学生教育研究災害傷害保険のごあんない」及び「学生教育研究災害傷害保険のしおり」を参照してください。請求手続は、保健管理室で行っています。

7. その他

7-1 図書館の利用について

工学部内に図書館が設けられています。学生証を提示して利用してください。

利用時間 平 日 8:45~22:00

土 曜 9:00~17:00

日曜・祝日 13:00~17:00

ただし、学生の休業等における期間中は、平日のみ8:45~17:00とします。

(HPアドレス http://www.lib.yamagata-u.ac.jp/)

7-2 火災防止

- (1) 火災防止については、特に注意を払い災害の起こらぬよう心がけてください。
- (2) 整備に不完全な点を認めた場合は、直ちに警務員室又は施設管理担当に連絡してください。
- (3) 指定の場所以外で喫煙しないでください。
- (4) 実習,実験等で火気を使用する場合は、その取扱い及び後始末は特に注意してください。また、木造の施設を使用する場合も、火の後始末は十分に注意してください。
- (5) 屋外での焚火はしないでください。

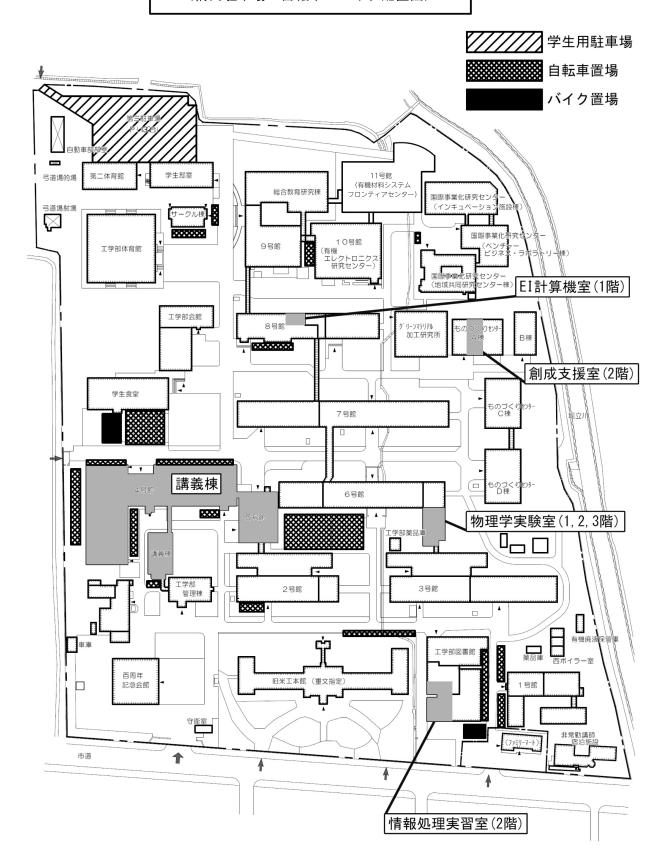
7-3 遺失. 拾得物

構内、教室等において、遺失、拾得したときは、速やかに学生支援担当に届け出てください。

7-4 盗難の予防

キャンパス内は、外部からの出入りが容易であり、不審者の特定も困難であるため、盗難予防には十分に留意してください。教室内、研究室内、課外活動共用施設等において被害に遭わないよう、金品の管理を怠りなく、また、自転車等にも鍵をかけ忘れのないよう、十分気をつけてください。

7-5 緊急時の連絡について


地震,風水害,火災等の災害に被災した学生は,自分及び友人の安否,被災の程度について,速やかに学生支援担当と指導教員(主指導教員)に連絡してください。

学生支援担当 TEL: 0238-26-3017 FAX: 0238-26-3406

Mail: kougakusei@jm.kj.yamagata-u.ac.jp

山形大学工学部配置図

(構内駐車場・自転車・バイク配置図)

V 諸 規 則 等

山形大学大学院規則 (抄)

[昭和39年4月1日]

目次

- 第1章 総則(第1条・第1条の2)
- 第2章 標準修業年限(第2条・第3条)
- 第3章 入学, 進学, 休学, 退学等(第4条-第11条)
- 第4章 教育方法等(第12条-第17条)
- 第5章 教育職員免許(第18条)
- 第6章 課程修了の要件及び学位の授与(第19条-第23条)
- 第7章 科目等履修生,研究生,特別聴講学生,特別研究学生及び外国人留学生(第24条-第28条)
- 第8章 検定料,入学料,授業料及び寄宿料(第29条)
- 第9章 岩手大学大学院連合農学研究科における教育研究の実施(第30条)
- 第10章 雑則(第31条)

附則

第1章 総則

(趣旨)

第1条 この規則は、国立大学法人山形大学及び山形大学基本組織規則第25条第3項の規定に 基づき、山形大学大学院(以下「本大学院」という。)における教育の実施について必要な 事項を定めるものとする。

(目的)

- 第1条の2 本大学院は、学術の理論及び応用を教授研究し、その探奥を究め、又は高度の専門性が求められる職業を担うための深い学識及び卓越した能力を培い、文化の進展に寄与することを目的とする。
- 2 各研究科の目的、課程・専攻及び収容定員は、次のとおりとする。

研究科	目 的	課程・専攻	入学定員	収容定員
理工学研	種々の分野で先	博士前期課程		
究科	端科学技術を将来	理学専攻	53	106
	にわたり維持し発	物質化学工学専攻	38	76
	展させるために, 広	バイオ化学工学専攻	28	56
	範な基礎学力に基	応用生命システム工学専攻	23	46
	づいた高度の専門	情報科学専攻	28	56
	知識と能力を備え	電気電子工学専攻	34	68
	た,柔軟で独創性豊	機械システム工学専攻	50	100
	かな科学者及び技	ものづくり技術経営学専攻	10	20
	術者の養成を目的	小計	264	528
	とする。	博士後期課程		
		地球共生圏科学専攻	5	15
		物質化学工学専攻	3	9
		バイオ工学専攻	4	12
		電子情報工学専攻	4	12
		機械システム工学専攻	3	9
		ものづくり技術経営学専攻	2	6
		小 計	21	63
		計	285	591

有機材料シ	有機材料を最大	博士前期課程		
ステム研究	限に活用した新た	有機材料システム専攻	65	130
科	な付加価値を持つ			
	システムである有	博士後期課程		
	機材料システムは,	有機材料システム専攻	10	30
	人と人,人とモノを			
	有機的につなげ,ア			
	ンビエントな社会	計	75	160
	を実現するための			
	社会的基盤技術と			
	して期待が高まっ			
	ている分野であり,			
	当該技術を社会(地			
	域) 実装するための			
	エンジンとなる人			
	材の養成を目的と			
	する。			

備考 博士課程(医学系研究科医学専攻を除く。)は、これを前期2年の課程(以下「博士前期課程」という。)及び後期3年の課程(以下「博士後期課程という」。)に区分し、博士前期課程はこれを修士課程として取り扱う。

第2章 標準修業年限

(標準修業年限)

- 第2条 修士課程及び専門職学位課程の標準修業年限は、2年とする。
- 2 医学系研究科看護学専攻及び生命環境医科学専攻,理工学研究科並びに有機材料システム 研究科の博士課程の標準修業年限は,5年とし,博士前期課程の標準修業年限は2年,博士 後期課程の標準修業年限は、3年とする。
- 3 医学系研究科医学専攻博士課程の標準修業年限は、4年とする。
- 4 在学期間は、標準修業年限の2倍の年数を超えることができない。 (長期履修学生)
- 第3条 学生が,職業を有している等の事情により前条に規定する標準修業年限を超えて一定 の期間にわたり計画的に教育課程を履修し課程を修了することを希望する場合は,研究科長 が許可する。
- 2 長期にわたる教育課程の履修に関し必要な事項は、別に定める。

第3章 入学, 進学, 休学, 退学等

(入学等)

- 第4条 入学,進学,休学,退学等は,国立大学法人山形大学及び山形大学基本組織規則第26 条に規定する研究科委員会(以下「委員会」という。)の意見を聴いた上で,学長が許可する。 (入学の時期)
- 第5条 入学の時期は、毎年4月とする。
- 2 学年の途中においても、学期の区分に従い、入学させることがある。 (修士課程、博士前期課程及び専門職学位課程の入学資格)
- 第6条 修士課程及び博士前期課程に入学することのできる者は,次の各号のいずれかに該当 する者とする。
- (1) 学校教育法(昭和22年法律第26号)第83条第1項に定める大学(以下「大学」という。)を卒業した者
- (2) 学校教育法第104条第4項の規定により学士の学位を授与された者
- (3) 外国において、学校教育における16年の課程を修了した者

- (4) 外国の学校が行う通信教育における授業科目を我が国において履修することにより当該 外国の学校教育における16年の課程を修了した者
- (5) 我が国において,外国の大学の課程(その修了者が当該外国の学校教育における16年の課程を修了したとされるものに限る。)を有するものとして当該外国の学校教育制度において位置付けられた教育施設であって,文部科学大臣が別に指定するものの当該課程を修了した者
- (6) 外国の大学その他の外国の学校(その教育活動等の総合的な状況について,当該外国の政府又は関係機関の認証を受けた者による評価を受けたもの又はこれに準ずるものとして,文部科学大臣が別に指定するものに限る。)において,修業年限が3年以上である課程を修了すること(当該外国の学校が行う通信教育における授業科目を我が国において履習することにより当該課程を修了すること及び当該外国の学校教育制度において位置付けられた教育施設であって前号の指定を受けたものにおいて課程を修了することを含む。)により,学士の学位を授与された者
- (7) 専修学校の専門課程(修業年限が4年以上であることその他の文部科学大臣が定める基準 を満たすものに限る。)で文部科学大臣が別に指定するものを文部科学大臣が定める日以後 に修了した者
- (8) 文部科学大臣の指定した者(昭和28年文部省告示第5号)
- (9) 大学に3年以上在学し、又は外国において学校教育における15年の課程を修了し、研究科において、所定の単位を優れた成績をもって修得したものと認めた者
- (10) 外国の学校が行う通信教育における授業科目を我が国において履修することにより当該 外国の学校教育における15年の課程を修了し、研究科において、所定の単位を優れた成績を もって修得したものと認めた者
- (11) 我が国において,外国の大学の課程(その修了者が当該外国の学校教育における15年の課程を修了したとされるものに限る。)を有するものとして当該外国の学校教育制度において位置付けられた教育施設であって,文部科学大臣が別に指定するものの当該課程を修了し,研究科において,所定の単位を優れた成績をもって修得したものと認めた者
- (12) 研究科において、個別の入学資格審査により、大学を卒業した者と同等以上の学力があると認めた者で、22歳に達したもの
- 2 専門職学位課程に入学することのできる者は、教育職員免許法(昭和24年法律第147号)に 定める免許状を有し、かつ、前項各号のいずれかに該当する者とする。 (博士後期課程の入学資格)
- 第7条 博士後期課程に入学することのできる者は、次の各号のいずれかに該当する者とする。
- (1) 修士の学位又は専門職学位を有する者
- (2) 外国において修士の学位又は専門職学位に相当する学位を授与された者
- (3) 外国の学校が行う通信教育における授業科目を我が国において履修し,修士の学位又は専門職学位に相当する学位を授与された者
- (4) 我が国において,外国の大学院の課程を有するものとして当該外国の学校教育制度において位置付けられた教育施設であって,文部科学大臣が別に指定するものの当該課程を修了し,修士の学位又は専門職学位に相当する学位を授与された者
- (5) 国際連合大学本部に関する国際連合と日本国との間の協定の実施に伴う特別措置法(昭和51年法律第72号)第1条第2項に規定する1972年12月11日の国際連合総会決議に基づき設立された国際連合大学(以下「国際連合大学」という。)の課程を修了し、修士の学位に相当する学位を授与された者
- (6) 外国の学校,第4号の指定を受けた教育施設又は国際連合大学の教育課程を履修し,第19条第3項に規定する試験及び審査に相当するものに合格し,修士の学位を有する者と同等以上の学力があると認められた者

- (7) 文部科学大臣の指定した者(平成元年文部省告示第118号)
- (8) 研究科において,個別の入学資格審査により,修士の学位又は専門職学位を有する者と同等以上の学力があると認めた者で,24歳に達したもの

(医学系研究科医学専攻博士課程の入学資格)

- 第8条 医学系研究科医学専攻博士課程に入学することのできる者は,次の各号のいずれかに 該当する者とする。
- (1) 大学の医学科, 歯学科又は修業年限が6年の課程の薬学科若しくは獣医学科を卒業した者
- (2) 学校教育法第104条第4項の規定により医学、歯学、薬学又は獣医学を専攻分野とする学士の学位を授与された者
- (3) 外国において、学校教育における18年の課程を修了し、その最終の課程が医学、歯学、薬学又は獣医学であった者
- (4) 外国の学校が行う通信教育における授業科目を我が国において履修することにより当該 外国の学校教育における18年の課程を修了し、その最終の課程が医学、歯学、薬学又は獣医 学であった者
- (5) 我が国において、外国の大学の課程(その修了者が当該外国の学校教育における18年の課程を修了したとされるものに限る。)を有するものとして当該外国の学校教育制度において位置付けられた教育施設であって、文部科学大臣が別に指定するものの当該課程を修了し、その最終の課程が医学、歯学、薬学又は獣医学であった者
- (6) 外国の大学その他の外国の学校(その教育活動等の総合的な状況について,当該外国の政府又は関係機関の認証を受けた者による評価を受けたもの又はこれに準ずるものとして,文部科学大臣が別に指定するものに限る。)において,修業年限が3年以上である課程を修了すること(当該外国の学校が行う通信教育における授業科目を我が国において履習することにより当該課程を修了すること及び当該外国の学校教育制度において位置付けられた教育施設であって前号の指定を受けたものにおいて課程を修了することを含む。)により,学士の学位を授与された者
- (7) 文部科学大臣の指定した者(昭和30年文部省告示第39号)
- (8) 大学(医学, 歯学又は修業年限が6年の課程の薬学若しくは獣医学を履修する課程に限る。)に4年以上在学し,又は外国において学校教育における16年の課程(医学, 歯学, 薬学又は獣医学を履修する課程を含むものに限る。)を修了し,研究科において,所定の単位を優れた成績をもって修得したものと認めた者
- (9) 外国の学校が行う通信教育における授業科目を我が国において履修することにより当該 外国の学校教育における16年の課程(医学, 歯学, 薬学又は獣医学を履修する課程を含むも のに限る。)を修了し, 研究科において, 所定の単位を優れた成績をもって修得したものと認 めた者
- (10) 我が国において、外国の大学の課程(その修了者が当該外国の学校教育における16年の課程(医学、歯学、薬学又は獣医学を履修する課程を含むものに限る。)を修了したとされるものに限る。)を有するものとして当該外国の学校教育制度において位置付けられた教育施設であって、文部科学大臣が別に指定するものの当該課程を修了し、研究科において、所定の単位を優れた成績をもって修得したものと認めた者
- (11) 研究科において、個別の入学資格審査により、大学の医学科、歯学科又は修業年限が6年の課程の薬学科若しくは獣医学科を卒業した者と同等以上の学力があると認めた者で、24歳に達したもの

(入学者選抜)

- 第9条 入学志願者については、選抜を行う。
- 2 入学者の選抜については、別に定めるところによる。

(博士後期課程への進学)

- 第9条の2 修士課程,博士前期課程又は専門職学位課程を修了し,引き続き博士後期課程に 進学を志願する者については、選考の上、進学を許可する。
- 2 第13条の2に規定する博士課程教育リーディングプログラムを選択している者で,博士前期課程に2年以上在学し,引き続き博士後期課程に進学する者については,選考の上,進学を許可する。ただし,在学期間に関しては,当該研究科が定めた要件を満たした者については,当該課程に1年以上在学すれば足りるものとする。 (休学)
- 第10条 休学期間は通算して,修士課程,博士前期課程及び専門職学位課程にあっては2年を,博士後期課程にあっては3年を,医学系研究科医学専攻博士課程にあっては4年を超えることはできない。

(留学)

- 第11条 本大学院と協定を締結している外国の大学院又はこれに相当する教育研究機関に留 学しようとする者は、願い出なければならない。
- 2 留学期間は、在学期間に算入する。
- 3 第1項に規定する外国の大学院又はこれに相当する教育研究機関との交流協定に基づく 留学生の派遣に関する必要な事項は、別に定める。

第4章 教育方法等

(教育方法)

- 第12条 本大学院(専門職学位課程を除く。)における教育は、授業科目の授業及び学位論文の 作成等に対する指導(以下「研究指導」という。)により行う。
- 2 専門職学位課程における教育は、授業科目の授業により行う。この場合において、専門職学位課程は、その目的を達成し得る実践的な教育を行うよう専攻分野に応じ事例研究、現地調査又は双方向若しくは多方向に行われる討論若しくは質疑応答その他の適切な方法により授業を行うなど適切に配慮するものとする。

(履修方法等)

第13条 各研究科における授業科目の内容及び単位数,履修方法等については,当該研究科に おいて定める。

(博士課程教育リーディングプログラム)

- 第13条の2 優秀な学生を俯瞰力と独創力を備え広く産学官にわたりグローバルに活躍する リーダーへと導くため、博士前期課程から博士後期課程までの一貫した教育を行う特別な教 育プログラムとして、博士課程教育リーディングプログラムを履修させることができる。
- 2 博士課程教育リーディングプログラムにおける授業科目の内容及び単位数, 履修方法等については, 当該研究科において定める。

(他の大学院における履修等)

- 第14条 教育上有益と認めるとき,研究科長は,他の大学院との協定に基づき,学生が当該大学院において履修した授業科目について修得した単位を,本大学院における授業科目の履修により修得したものとみなすことができる。
- 2 前項の規定は、第11条に規定する留学の場合に準用する。
- 3 前2項の規定により修得したものとみなすことができる単位数は、合わせて10単位を超えないものとする。
- 4 前項の規定にかかわらず、専門職学位課程にあっては、第22条第1項に規定する修了要件として定める単位数の2分の1を超えないものとする。

(入学前の既修得単位の認定)

第15条 教育上有益と認めるとき,研究科長は,学生が本大学院に入学する前に本大学院又は他の大学院において履修した授業科目について修得した単位(科目等履修生として修得した

単位を含む。)を、本大学院に入学した後の本大学院における授業科目の履修により修得したものとみなすことができる。

- 2 前項の規定により修得したものとみなすことができる単位数は,転入学及び再入学の場合 を除き,本大学院において修得した単位以外のものについては,10単位を超えないものとす る。
- 3 前項の規定にかかわらず、専門職学位課程にあっては、転入学及び再入学の場合を除き、本大学院において修得した単位以外のものについては、前条の規定により本大学院において修得したものとみなす単位数及び第22条第2項の規定により免除する単位数と合わせて、第22条第1項に規定する修了要件として定める単位数の2分の1を超えないものとする。(他の大学院等における研究指導)
- 第16条 教育上有益と認めるとき、研究科長は、他の大学院又は研究所等とあらかじめ協議の上、学生が当該大学院又は研究所等において必要な研究指導を受けることを認めることができる。ただし、修士課程及び博士前期課程の学生について認める場合には、当該研究指導を受ける期間は、1年を超えないものとする。
- 2 前項の研究指導を受けようとする者は、研究科長の許可を得なければならない。
- 3 第1項の規定による研究指導は、課程の修了の要件となる研究指導として認定することができる。

(教育方法の特例)

第17条 教育上特別の必要があると認められる場合には、夜間その他特定の時間又は時期において授業又は研究指導を行う等の適当な方法により教育を行うことができる。

第5章 教育職員免許

(教育職員免許)

- 第18条 教育職員の免許状を受けようとするときは、教育職員免許法及び同法施行規則(昭和 29年文部省令第26号)に定める所要の単位を修得しなければならない。
- 2 本大学院の研究科の専攻において、取得できる教育職員の免許状の種類及び教科は、別表 のとおりとする。

第6章 課程修了の要件及び学位の授与

(修士課程及び博士前期課程の修了要件)

- 第19条 修士課程及び博士前期課程の修了の要件は、当該課程に2年以上在学し、30単位以上を修得し、かつ、必要な研究指導を受けた上、修士論文の審査及び最終試験に合格することとする。ただし、在学期間に関しては、優れた研究業績を上げた者については、当該課程に1年以上在学すれば足りるものとする。
- 2 前項の場合において、研究科が当該課程の目的に応じ適当と認めるときは、特定の課題に ついての研究の成果の審査をもって修士論文の審査に代えることができる。
- 3 博士前期課程の修了の要件は、当該博士課程の目的を達成するために必要と認められる場合には、前2項に規定する研究科の行う修士論文又は特定の課題についての研究の成果の審査及び最終試験に合格することに代えて、研究科が行う次に掲げる試験及び審査に合格することとすることができる。
- (1) 専攻分野に関する高度の専門的知識及び能力並びに当該専攻分野に関連する分野の基礎的素養であって当該前期課程において修得し、又は涵養すべきものについての試験
- (2) 博士論文に係る研究を主体的に遂行するために必要な能力であって当該前期課程において修得すべきものについての審査

(博士後期課程の修了要件)

第20条 博士後期課程の修了の要件は、当該課程に3年以上在学し、研究科が定める所定の単位を修得し、かつ、必要な研究指導を受けた上、博士論文の審査及び最終試験に合格することとする。ただし、在学期間に関しては、優れた研究業績を上げた者については、

当該課程に1年以上在学すれば足りるものとする。

2 大学院設置基準(昭和49年文部省令第28号)第16条第1項ただし書の規定による在学期間をもって修士課程又は博士前期課程を修了した者については,前項ただし書中「1年」とあるのは「博士後期課程の標準修業年限3年から修士課程又は博士前期課程における在学期間を減じた期間」と読み替えて、同項の規定を適用する。

(医学系研究科医学専攻博士課程の修了要件)

第21条 医学系研究科医学専攻博士課程の修了の要件は、当該課程に4年以上在学し、30単位 以上を修得し、かつ、必要な研究指導を受けた上、博士論文の審査及び最終試験に合格する こととする。ただし、在学期間に関しては、優れた研究業績を上げた者については、当該課 程に3年以上在学すれば足りるものとする。

(専門職学位課程の修了要件)

- 第22条 専門職学位課程の修了の要件は、当該課程に2年以上在学し、研究科が定める授業科目について、45単位以上を修得することとする。
- 2 前項の規定にかかわらず、専門職学位課程において、教育上有益と認めるときは、入学する前の小学校等の教員としての実務経験を有する者について、10単位を超えない範囲で、前項に規定する修了要件単位数を免除することがある。 (学位)
- 第23条 第19条から前条までの規定により課程修了の認定を得た者に、学位を与える。
- 2 学位に関し必要な事項は、別に定める。

第7章 科目等履修生,研究生,特別聴講学生,特別研究学生及び外国人留学生 (科目等履修生)

- 第24条 本大学院の学生以外の者で、本大学院が開設する一又は複数の授業科目を履修しようとする者があるときは、授業及び研究に妨げのない限り、選考の上、科目等履修生として入学を許可し、単位を与えることができる。
- 2 科目等履修生に関し必要な事項は、別に定める。

(研究生)

- 第25条 本大学院において,専門事項について更に攻究しようとする者があるときは,授業及び研究の妨げのない限り,選考の上,研究生として入学を許可する。
- 2 研究生に関し必要な事項は、別に定める。

(特別聴講学生)

- 第26条 本大学院との協定による他の大学院の学生で,本大学院の特定の授業科目を履修しようとする者があるときは,委員会の意見を聴いた上で,学長が特別聴講学生として許可する。
- 2 特別聴講学生については、山形大学(以下「本学」という。)の諸規則中、学生に関する規 定を準用する。
- 3 第1項に規定する外国の大学院との交流協定に基づく留学生受入れに関する必要な事項 は、別に定める。

(特別研究学生)

- 第27条 他の大学院の学生で、本大学院において研究指導を受けようとする者があるときは、 あらかじめ他大学院との協議の上、研究科長が特別研究学生として許可する。
- 2 特別研究学生に関し必要な事項は、別に定める

(外国人留学生)

- 第28条 外国人で大学において教育を受ける目的をもって入国し,本大学院に入学を志願する 者があるときは、選考の上、外国人留学生として入学を許可する。
- 2 外国人留学生に関し必要な事項は、別に定める。

第8章 検定料.入学料.授業料及び寄宿料

(検定料等の額)

- 第29条 検定料,入学料,授業料及び寄宿料の額は,国立大学法人山形大学における授業料その他の費用に関する規程の定めるところによる。
- 2 前項の規定にかかわらず、科目等履修生及び研究生については検定料、入学料及び授業料 を、特別聴講学生及び特別研究学生については授業料を、協定の定めるところにより、徴収 しないことができる。

第9章 岩手大学大学院連合農学研究科における教育研究の実施

(連合大学院)

- 第30条 岩手大学大学院に設置される連合農学研究科の教育研究の実施に当たっては,本学は, 帯広畜産大学,弘前大学及び岩手大学とともに協力するものとする。
- 2 前項の連合農学研究科に置かれる連合講座は、帯広畜産大学畜産学部、弘前大学農学生命 科学部及び遺伝子実験施設並びに岩手大学農学部の教員とともに、本学農学部の教員がこれ を担当するものとする。

第10章 雑 則

(学部規則の準用)

第31条 この規則に定められていない事項については、山形大学学部規則を準用する。この場合において、「学部教授会」とあるのは「研究科委員会」と、「学部長」とあるのは「研究科長」と読み替えるものとする。

附則

この規則は、昭和39年4月1日から施行する。

(省略)

附 則(平成28年1月25日)

- 1 この規則は、平成28年4月1日から施行する。
- 2 理工学研究科博士前期課程の機能高分子工学専攻及び有機デバイス工学専攻並びに同研 究科博士後期課程の有機材料工学専攻は、改正後の山形大学大学院規則(以下「規則」とい う。)第1条の2第2項の規定にかかわらず、平成28年3月31日に当該専攻に在学する者が 当該専攻に在学しなくなる日までの間、存続するものとする。
- 3 前項の研究科において取得できる教育職員の免許状の種類及び教科は,規則第18条第2項 の規定にかかわらず,なお従前の例による。
- 4 規則第1条の2第2項の規定にかかわらず,平成28年度及び平成29年度の理工学研究科, 有機材料システム研究科及び農学研究科の各専攻の収容定員は次のとおりとする。

研究科 ・ 専 攻	平成28年度	平成29年度
	収容定員	収容定員
理工学研究科		
博士前期課程		l J
数理科学専攻	22	
物理学専攻	24	/
物質生命化学専攻	26	/
生物学専攻	18	/
地球環境学専攻	16	
機能高分子工学専攻	30	
有機デバイス工学専攻	25	
物質化学工学専攻	76	
バイオ化学工学専攻	56	
応用生命システム工学専攻	46	/
情報科学専攻	56	
電気電子工学専攻	68	
機械システム工学専攻	100	
ものづくり技術経営学専攻	24	
小計	587	
博士後期課程		
地球共生圏科学専攻	15	15
有機材料工学専攻	18	9
物質化学工学専攻	3	6
バイオ工学専攻	12	12
電子情報工学専攻	14	13
機械システム工学専攻	11	10
ものづくり技術経営学専攻	10	8
小計	83	73
計	670	601
有機材料システム研究科	310	301
博士前期課程		
有機材料システム専攻	65	
博士後期課程	00	
有機材料システム専攻	10	20
計	75	150
П	10	100

附 則(平成29年1月23日)

- 1 この規則は、平成29年4月1日から施行する。
- 2 医学系研究科博士前期課程及び博士後期課程の生命環境医科学専攻並びに理工学研究 科博士前期課程の数理科学専攻,物理学専攻,物質生命化学専攻,生物学専攻及び地球 環境学専攻は,改正後の山形大学大学院規則(以下「規則」という。)第1条の2第2項 の規定にかかわらず,平成29年3月31日に当該専攻に在学する者が当該専攻に在学し なくなる日までの間,存続するものとする。
- 3 前項の専攻において取得できる教育職員の免許状の種類及び教科は、規則第 18 条第 2 項の規定にかかわらず、なお従前の例による。
- 4 規則第1条の2第2項の規定にかかわらず,平成29年度から平成31年度までの医学系研究科及び理工学研究科博士前期課程の各専攻の収容定員は、次のとおりとする。

研究科・専攻	平成 29 年度 収容定員	平成 30 年度 収容定員
理工学研究科		
博士前期課程		
数理科学専攻	11	0
物理学専攻	12	0
物質生命化学専攻	13	0
生物学専攻	9	0
地球環境学専攻	8	0
理学専攻	53	0
物質化学工学専攻	76	106
バイオ化学工学専攻	56	
応用生命システム工学専攻	46	
情報科学専攻	56	/
電気電子工学専攻	68	
機械システム工学専攻	100	
ものづくり技術経営学専攻	20	
小 計	528	528

別表

7132			
研究科	専 攻	免許状の種類	教科
理工学研究科	理学専攻	中学校教諭 専修免許状	数学,理科
		高等学校教諭 専修免許状	数学,理科
	物質化学工学専攻	高等学校教諭 専修免許状	理科,工業
	バイオ化学工学専攻	高等学校教諭 専修免許状	理科
	応用生命システム工学専攻	高等学校教諭 専修免許状	工業
	情報科学専攻	高等学校教諭 専修免許状	情報,工業
	電気電子工学専攻 機械システム工学専攻	高等学校教諭 専修免許状	工業

2. 山形大学学位規程(抄)

(昭和54年4月21日全部改正)

目次

- 第1章 総則(第1条-第4条)
- 第2章 学士の学位授与(第5条・第6条)
- 第3章 修士の学位授与(第7条-第16条)
- 第4章 博士の学位授与
 - 第1節 課程による博士(第17条-第26条)
 - 第2節 論文審査等による博士(第27条-第38条)
- 第5章 教職修士(専門職)の学位授与(第39条-第42条)
- 第6章 雑則(第43条-第48条)

附則

第1章 総則

(趣旨)

第1条 この規程は、学位規則(昭和28年文部省令第9号。以下「省令」という。)第13条第1項、山形大学学部規則第39条第2項及び山形大学大学院規則(以下「大学院規則」という。)第23条第2項の規定に基づき、山形大学(以下「本学」という。)が授与する学位について必要な事項を定めるものとする。

(学位の種類)

- 第2条 本学において授与する学位は、学士、修士、博士及び教職修士(専門職)とする。 (専攻分野の名称)
- 第3条 学位に付記する専攻分野の名称は、別表のとおりとする。

(学位の名称)

第4条 本学の学位を授与された者が学位の名称を用いるときは,「山形大学」と付記するものとする。

第2章 学士の学位授与

(学士の学位授与の要件)

第5条 学士の学位は、本学を卒業した者に授与する。

(学位の授与)

第6条 学長は、卒業を認定した者に所定の学位記を交付して学士の学位を授与する。

第3章 修士の学位授与

(修士の学位授与の要件)

第7条 修士の学位は,本学大学院修士課程又は博士前期課程(以下「修士課程」という。) を修了した者に授与する。

(修士に係る学位論文の提出)

- 第8条 修士の学位論文は,当該学位論文の提出者が所属する研究科の研究科長に提出するものとする。
- 2 前項の提出する学位論文は、1編とする。ただし、参考として他の論文を添付することができる。
- 3 審査のため必要があるときは、学位論文の提出者に対して当該論文の訳本、模型又は標本 等の資料を提出させることができる。

(学位論文の返付)

第9条 前条の規定により受理した学位論文は、いかなる事情があっても返付しない。

第10条 削除

(審査委員)

- 第11条 研究科長は、第8条の規定による学位論文を受理したときは、論文内容に関連する科目の教授の中から3人以上の審査委員を選出し、論文の審査及び最終試験を行うものとする。 ただし、必要があるときは、山形大学学術研究院規程第8条第1項に基づく主担当教員として当該研究科に配置された教授以外の教員を審査委員に選ぶことができる。
- 2 研究科長は、学位論文の審査に当たって必要があるときは、山形大学学術研究院規程第8 条第1項に基づく担当教員として本学大学院の他の研究科に配置された教員又は他の大学 院若しくは研究所等の教員等を審査委員に加えることができる。

(最終試験)

第12条 修士の学位論文の提出者に課す最終試験は、学位論文の審査が終った後、当該学位論 文を中心として、これに関連のある事項について口頭又は筆答により行う。

(審査委員の報告)

第13条 審査委員は、学位論文の審査及び最終試験を終了したときは、直ちにその結果を文書をもって研究科長に報告しなければならない。

(研究科委員会の意見聴取)

第14条 研究科長は、大学院規則第19条の規定に基づき、修士の学位を授与すべきか否かについて、研究科委員会から意見を聴取するものとする。

(学長への報告)

- 第15条 研究科長は、修士課程の修了を認定しようとする者について、学長に報告しなければ ならない。
- 2 学長は,前項の報告に疑義があるときは,理由を付して研究科長に再審査を求めることができる。この場合において,当該研究科長は,再審査を行い,その結果を遅滞なく学長に報告しなければならない。

(学位の授与)

第16条 学長は,修士課程の修了を認定した者に所定の学位記を交付して修士の学位を授与する。

第4章 博士の学位授与

第1節 課程による博士

(博士の学位授与の要件)

第17条 博士の学位は、本学大学院博士課程を修了した者に授与する。

(課程による博士に係る学位論文の提出)

- 第18条 課程による博士の学位論文は,当該学位論文の提出者が所属する研究科の研究科長に 提出するものとする。
- 2 前項の提出する学位論文は、1編とする。ただし、参考として他の論文を添付することができる。
- 3 審査のため必要があるときは、学位論文の提出者に対して当該論文の訳本、模型又は標本 等の資料を提出させることができる。

(学位論文の返付)

第19条 前条の規定により受理した学位論文は、いかなる事情があっても返付しない。

第20条 削除

(審査委員)

第21条 研究科長は、第18条の規定による学位論文を受理したときは、論文内容に関連する科目の教授の中から3人以上の審査委員を選出し、論文の審査及び最終試験を行うものとする。ただし、必要があるときは、山形大学学術研究院規程第8条第1項に基づく主担当教員として当該研究科に配置された教授以外の教員を審査委員に選ぶことができる。

ただし、必要があるときは、山形大学学術研究院規程第8条第1項に基づく主担当教員として当該研究科に配置された教授以外の教員を審査委員に選ぶことができる。

2 研究科長は、学位論文の審査に当たって必要があるときは、山形大学学術研究院規程第8 条第1項に基づく主担当教員として本学大学院の他の研究科に配置された教員又は他の大 学院若しくは研究所等の教員等を審査委員に加えることができる。

(最終試験)

第22条 課程による博士の学位論文の提出者に課す最終試験は、学位論文の審査が終った後、 当該学位論文を中心として、これに関連のある事項について口頭又は筆答により行う。 (審査委員の報告)

第23条 審査委員は、学位論文の審査及び最終試験を終了したときは、直ちにその結果を文書をもって研究科長に報告しなければならない。

(研究科委員会の意見聴取)

第24条 研究科長は、大学院規則第20条又は第21条の規定に基づき、博士の学位を授与すべき か否かについて、研究科委員会から意見を聴取するものとする。

(学長への報告)

- 第25条 研究科長は、博士課程の修了を認定しようとする者について、学位論文の審査要旨及 び最終試験の結果を文書をもって学長に報告しなければならない。
- 2 学長は,前項の報告に疑義があるときは,理由を付して研究科長に再審査を求めることができる。この場合において,当該研究科長は,再審査を行い,その結果を遅滞なく学長に報告しなければならない。

(学位の授与)

第26条 学長は、博士課程の修了を認定した者に所定の学位記を交付して博士の学位を授与する。

第2節 論文審査等による博士

(論文審査等による博士の学位)

第27条 第17条の規定によるもののほか,博士の学位は,博士課程を経ない者であっても本学 に学位論文を提出してその審査に合格し,かつ,本学大学院博士課程を修了した者と同等以 上の学力を有することを確認された者にも授与することができる。

(論文による学位授与の申請)

- 第28条 前条の規定により博士の学位の授与を申請する者は、学位申請書(別記様式1)に学位 論文,論文目録,論文内容の要旨,履歴書及び学位論文審査手数料を添え,研究科長を経て 学長に提出しなければならない。
- 2 前項の場合において、本学大学院博士課程(医学系研究科先進的医科学専攻及び看護学専攻、理工学研究科並びに有機材料システム研究科にあっては博士後期課程)に標準修業年限以上在学し所定の単位を修得して退学した者が、退学後1年以内に学位論文を提出した場合には、学位論文審査手数料は免除する。
- 3 第1項の提出する学位論文は、1編とする。ただし、参考として他の論文を添付することができる。
- 4 審査のため必要があるときは、学位論文の提出者に対して当該論文の訳本、模型又は標本等の資料を提出させることができる。
- 5 第1項の学位論文審査手数料の額は、山形大学における授業料その他の費用に関する規程 の定めるところによる。

(学位論文及び学位論文審査手数料の返付)

第29条 前条の規定により受理した学位論文及び収納した学位論文審査手数料は、いかなる事情があっても返付しない。

第30条 削除

(審查委員)

- 第31条 研究科長は,第28条第1項の申請を受理したときは,論文内容に関連する科目の教授の中から3人以上の審査委員を選出し,論文の審査及び学力の確認を行うとともに,学長に学位申請書等を提出するものとする。ただし,必要があるときは,山形大学学術研究院規程第8条第1項に基づく主担当教員として当該研究科に配置された教授以外の教員を審査委員に選ぶことができる。
- 2 研究科長は、学位論文の審査に当たって必要があるときは、山形大学学術研究院規程第8 条第1項に基づく主担当教員として本学大学院の他の研究科に配置された教員又は他の大 学院若しくは研究所等の教員等を審査委員に加えることができる。

(学力の確認)

第32条 第27条の規定により博士の学位の授与を申請した者に課す学力の確認は,口頭又は筆答により,専攻学術及び外国語について,本学大学院の博士課程を修了した者と同等以上の学力を有することを確認するために行う。この場合において,外国語については原則として2種類を課するものとする。

(学力確認の特例)

第33条 第27条の規定により博士の学位の授与を申請した者が、本学大学院の博士課程(医学系研究科先進的医科学専攻及び看護学専攻,理工学研究科並びに有機材料システム研究科にあっては博士後期課程)に所定の標準修業年限以上在学し所定の単位を修得した者であるときは、前条の学力の確認を免除することができる。

(審査期間)

第34条 第27条の規定による博士の学位論文の審査及び学位授与に係る学力の確認は,学位授 与の申請を受理した日から1年以内に終了するものとする。

(審査委員の報告)

第35条 審査委員は、学位論文の審査及び学力の確認を終了したときは、直ちにその結果を文書をもって研究科長に報告しなければならない。

(研究科委員会の意見聴取)

第36条 研究科長は,前条の報告に基づき,博士の学位を授与すべきか否かについて,研究科 委員会から意見を聴取するものとする。

(学長への報告)

- 第37条 研究科長は、学位論文の審査要旨及び学力の確認の結果を文書をもって学長に報告しなければならない。
- 2 学長は、前項の報告に疑義があるときは、理由を付して研究科長に再審査を求めることができる。この場合において、当該研究科長は、再審査を行い、その結果を遅滞なく学長に報告しなければならない。

(学位の授与)

第38条 学長は、学位論文の審査に合格し、かつ、学力が確認された者に所定の学位記を交付して博士の学位を授与し、学位を授与できない者にはその旨を通知する。

第5章 教職修士(専門職)の学位授与

(教職修士(専門職)の学位授与の要件)

- 第39条 教職修士(専門職)の学位は、本学大学院専門職学位課程を修了した者に授与する。 (教育実践研究科委員会の意見聴取)
- 第40条 教育実践研究科長は、大学院規則第22条の規定に基づき、教職修士(専門職)の学位を 授与すべきか否かについて、教育実践研究科委員会から意見を聴取するものとする。 (学長への報告)
- 第41条 教育実践研究科長は、専門職学位課程の修了を認定しようとする者について、学長に報告しなければならない。

2 学長は、前項の報告に疑義があるときは、理由を付して教育実践研究科長に再審査を求めることができる。この場合において、教育実践研究科長は、再審査を行い、その結果を遅滞なく学長に報告しなければならない。

(学位の授与)

第42条 学長は、専門職学位課程の修了を認定した者に所定の学位記を交付して教職修士(専 門職)の学位を授与する。

第6章 雑則

(学位授与の報告)

第43条 学長は,第26条及び第38条の規定により博士の学位を授与したときは,省令第12条の規定に基づき,文部科学大臣に報告するものとする。

(学位論文要旨等の公表)

第44条 本学は、博士の学位を授与したときは、省令第8条の規定に基づき、学位を授与した 日から3月以内にその論文の内容の要旨及び論文審査の結果の要旨をインターネットの利 用により公表するものとする。

(学位論文の公表)

- 第45条 博士の学位を授与された者は、学位を授与された日から1年以内にその学位論文の全文を公表しなければならない。ただし、学位の授与を受ける前に公表しているときは、この限りではない。
- 2 前項の規定にかかわらず、博士の学位を授与された者は、やむを得ない事由がある場合には、学長の承認を受けて、論文の全文に代えてその内容を要約したものを公表することができる。この場合において、学長は、その論文の全文を求めに応じて閲覧に供しなければならない。
- 3 博士の学位を授与された者が行う前2項の規定による公表は、本学の協力を得て、インターネットの利用により行うものとする。
- 4 第1項及び第2項の規定により公表する場合には、「山形大学審査学位論文」又は「山形大学審査学位論文要旨」と明記しなければならない。

(学位授与の取消)

第46条 本学において学位を授与された者が、その名誉を汚す行為があったとき又は不正の方法により学位の授与を受けた事実が判明したときは、学長は、当該教授会又は当該研究科委員会の意見を聴いた上で学位の授与を取り消し、学位記を返付させ、かつ、その旨を公表するものとする。

(学位記等の様式)

第47条 学位記の様式は、別記様式2のとおりとする。

(その他)

第48条 この規程に定めるもののほか、学位の授与に関し必要な事項は、当該学部長又は当該研究科長が学長の承認を得て定める。

附 則 (平成28年1月25日)

- 1 この規程は、平成28年4月1日から施行する。ただし、別表「博士の学位(論文審査等による博士)」の改正規定は、平成31年4月1日から施行する。
- 2 改正後の山形大学学位規程の規定にかかわらず、平成28年3月31日に理工学研究科博士前期課程の機能高分子工学専攻及び有機デバイス工学専攻並びに同研究科博士後期課程の有機材料工学専攻に在学する者の学位授与の取扱いについては、なお従前の例による。

附 則 (平成 29 年 1 月 23 日)

1 この規程は、平成29年4月1日から施行する。

2 改正後の山形大学学位規程の規定にかかわらず,平成29年3月31日に人文学部,地域教育文化学部(地域教育文化学科の異文化交流コース,造形芸術コース,音楽芸術コース,スポーツ文化コース,食環境デザインコース,生活環境科学コース,システム情報学コース),理学部,工学部(機能高分子工学科,物質化学工学科,バイオ化学工学科,応用生命システム工学科,情報科学科,電気電子工学科),医学系研究科博士前期課程の生命環境医科学専攻,同研究科博士後期課程の生命環境医科学専攻及び理工学研究科博士前期課程の数理科学専攻,物理学専攻,物質生命化学専攻,生物学専攻,地球環境学専攻に在学する者の学位授与の取扱いについては,なお従前の例による。

別表

学士の学位

, _ , , , , , , , , , , , , , , , , , , ,			
学部	学科	履修コース	学位の種類及び 専攻分野の名称
工学部	高分子・有機材料工学科 化学・バイオ工学科 情報・エレクトロニクス学科 機械システム工学科 建築・デザイン学科 システム創成工学科		学士(工学)

修士の学位

12 — 17 J. —			
研究科	専攻	課程	学位の種類及び 専攻分野の名称
理工学研究科	理学専攻	博士前期課程	修士(理学)
	物質化学工学専攻 バイオ化学工学専攻 応用生命システム工学専攻 情報科学専攻 電気電子工学専攻 機械システム工学専攻 ものづくり技術経営学専攻	博士前期課程	修士(工学)
有機材料システム研究科	有機材料システム専攻	博士前期課程	修士(工学)

博士の学位(課程による博士)

 	/ 		
研究科	専攻	課程	学位の種類及び 専攻分野の名称
理工学研究科	地球共生圏科学専攻	博士後期課程	博士(理学) 博士(工学) 博士(学術)
	物質化学工学専攻	博士後期課程	博士(工学)
	バイオ工学専攻 電子情報工学専攻 機械システム工学専攻 ものづくり技術経営学専攻	博士後期課程	博士(工学)博士(学術)
有機材料システム研究科	有機材料システム専攻	博士後期課程	博士(工学)

博士の学位(論文審査等による博士)

研究科	学位の種類及び専攻分野の名称
理工学研究科	博士(理学) 博士(工学) 博士(学術)
有機材料システム研究科	博士(工学)

3. 山形大学大学院長期履修学生に関する規程

(平成16年6月9日制定)

(趣旨)

第1条 この規程は、山形大学大学院規則第3条の規定に基づき、長期にわたる教育課程を履修する学生(以下「長期履修学生」という。)について必要な事項を定めるものとする。 (対象)

- 第2条 長期履修学生を希望することができる者は、次の各号の一に該当する者とする。
 - (1) 職業を有し、所属長の承諾を得た者
 - (2) その他やむを得ない事情であると研究科長が認める者

(申請手続)

第3条 長期履修学生を希望する者は、別記様式1により、別に定める期間内に学長に申請しなければならない。

(許可)

- 第4条 前条の申請に対しては、研究科が行う審査を経て、学長が許可する。
- 2 審査は、申請書及び面談により行うものとする。

(長期履修の期間)

第5条 長期にわたる教育課程を履修することができる期間は、山形大学大学院規則第2条第4項 に規定する期間以内とする。

(履修期間の変更)

- 第6条 長期履修学生が、許可された履修期間の変更を希望する場合は、別記様式2により、別に 定める期間内に、学長に申請しなければならない。
- 2 許可された履修期間の変更は、在学中1回限りとする。ただし、修了予定年次開始後の変更はできないものとする。

(履修期間変更の許可)

第7条 前条の申請に対しては、第4条の規定を準用する。

(教育課程の編成)

第8条 長期履修学生に係る教育課程の編成は、当該研究科が定める履修方法を弾力的に運用する ものとし、長期履修学生に限定した教育課程の編成は行わないものとする。

(長期履修学生となる時期等)

- 第9条 長期履修学生となる時期及び履修期間を変更する時期は、原則として学期の初めとする。 (授業料)
- 第10条 長期履修学生の授業料の年額は、国立大学法人山形大学における授業料その他の費用に 関する規程の定めるところによる。
- 2 長期履修学生として許可された履修期間を越えた場合の授業料は、一般の学生と同様の授業料を適用する。

(その他)

第11条 この規定に定めるもののほか、長期履修学生に関し必要な事項は、学長が別に定める。 附 則

この規則は、平成16年6月9日から施行し、平成16年度入学者から適用する。

RKH BII

この規定は、平成20年4月1日から施行する。

附則

この規程は、平成22年4月1日から施行する。

長期履修学生申請書

年 月 日

山形大学長 殿

研究科 専攻

É 第 即

下記のとおり、長期履修学生を希望したいので申請します。

記

受験番号	宁 (学	生番	号)									
入	学	年	月	日	ſ	多 了	予定	年 月	日	修	業予定	年数
		年	月	日入学			年	月	日修了		年	か月
現住所	₸	-							Tel	_	-	
	勤務	先名	(職和	重等)								
勤務先	所在:	地	₸	-					Tel	_	_	
申請理由 長期履修の	必要性	生:										
長期履修計	·画:											
指導教員の	意見											
					指導	[教員氏	名				印	

別記様式2

長期履修期間変更申請書

年 月 日

山形大学長 殿

研究科 専攻

下記のとおり、長期履修期間を変更したいので申請します。

記

学 生 番	뭉								
入学年月日		年	月	日	入学				
現在の修了 予定年月日		年	月	日	修了				
現在の		年	月	日	から	(年	か月)	
履修期間		年	月	日	まで	`	'	,,,,,	
変更後の修了 予定年月日		年	月	日	修了				
変更後の		年	月	日	から	,	-	, H)	
履修期間		年	月	日	まで	(年	か月)	
長期履修期間変更	更を必要と	する理由:							
指導教員の意見									
				指導	教員氏	名			印

4. 山形大学大学院理工学研究科長期履修学生に関する内規

(趣旨)

- 1 この内規は、山形大学大学院長期履修学生に関する規程に基づき、山形大学大学院理工学研究科における長期履修学生の取扱いについて必要な事項を定めるものとする。 (対象)
- 2 長期履修学生を希望することができる者は、次の各号のいずれかに該当する者とする。
 - (1) 職業を有し、所属長の承諾を得た者
 - (2) その他やむを得ない事情であると研究科長が認める者 (申請手続)
- 3 長期履修学生を希望する者は、指導教員の承諾を得て、原則として学期の初めに長期 履修学生申請書を研究科長に提出しなければならない。

(審杳)

- 4 研究科長は、前頃の申請書を受理したときは、教務委員会にその審査を付託する。
- 5 教務委員会は、申請書及び面談により審査し、その結果を研究科委員会に報告する。
- 6 研究科委員会は,前項の報告に基づき審査し,可否を決定する。 (長期履修の期間)
- 7 長期履修学生の履修期間は、標準修業年限の2倍を超えることはできない。 (履修期間の変更)
- 8 長期履修学生が、許可された履修期間の変更を希望する場合は、指導教員の承諾を得て、原則として学期の初めに長期履修期間変更申請書を研究科長に提出しなければならない。
- 9 前項の申請の審査に対しては,第4項から第6項までの規定を準用する。 (審査結果の通知)
- 10 研究科長は、審査結果を審査結果通知書(別記様式)により通知するものとする。 (履修方法)
- 11 長期履修学生は、現行の教育課程の範囲内で指導教員と履修計画について打合せの上、 履修するものとする。

(その他)

12 この内規に定めるもののほか、長期履修学生に関し必要な事項は、研究科委員会の議を経て別に定める。

附則

この内規は、平成17年3月8日から施行し、平成16年度入学生から適用する。 附 則

この内規は、平成22年7月20日から施行する。

別記様式

審查結果通知書

年 月 日

山形大学大学院理工学研究科

専攻

様

山形大学大学院理工学研究科長

申請のあった長期履修について、下記のとおり決定されましたので、お知らせします。

記

	入学年月日				但	修了予定年月日				修業予定年数	
申請期間	平成	年	月	日	平成	年	月	日	年	か月	

審査の結果,以上の申請を許可する。(不許可とする)

山 形 大 学 長

審査結果通知書

年 月 日

山形大学大学院理工学研究科

専攻

様

山形大学大学院理工学研究科長

申請のあった長期履修期間の変更について、下記のとおり決定されましたので、お知らせします。

記

入学年月日	年	三 月	日	入学	
現在の修了 予定年月日	年	三月	日	修了	
現 在 の 履修期間	4			から(年 まで	か月)
変更後の修了 予定年月日	年	三月	日	修了	
変更後の履修期間	4			から(年 まで	か月)

審査の結果,以上の申請を許可する。(不許可とする)

山 形 大 学 長

5. 山形大学大学院理工学研究科学位審查細則

(平成5年4月23日制定)

第1章 総 則

(趣旨)

第1条 この細則は、山形大学大学院規則(以下「大学院規則」という。)及び山形大学学位規程 (以下「学位規程」という。)に定めるもののほか、本学大学院理工学研究科の修士及び博士の 学位審査等に関し必要な事項を定めるものとする。

第2章 修士の学位

(学位論文の提出)

- 第2条 学位論文を提出できる者は、所定の提出日において、大学院規則第19条に定める修了要件を、当該提出日に対応する修了日までに、具備できる見込みのある者でなければならない。 (学位論文の題目)
- **第3条** 学位論文を提出しようとするときは、あらかじめその論文の題目及び研究内容について 指導教員の承認を受けなければならない。
- 2 学位論文の題目は、所定の様式により論文提出の2か月前に、山形大学大学院理工学研究科博士前期課程山形地区委員会又は米沢地区委員会(以下「地区委員会」という。)の委員長に届け出なければならない。
- 3 学位論文の題目を変更しようとする場合の手続は、第1項に準ずるものとする。 (学位論文の審査申請)
- 第4条 学位論文の審査を申請しようとする者(以下「申請者」という。)は、指導教員の承認を 得た上、申請書に次に掲げる論文等を添付して地区委員会の委員長に提出しなければならない。

3部

- (1) 学位論文(和文又は英文)(A4判,原本) 3部 このほか審査に必要な部数
- (2) 論文内容の要旨 (所定の様式)
- 2 申請書等の提出期限は、次のとおりとする。
 - (1) 後期提出の場合 2月10日
 - (2) 前期提出の場合 8月10日
- 3 前項に定める日が休日に当たるときは、その前日を提出期限とする。

(学位論文審査申請の通知)

第5条 地区委員会の委員長は、前条の申請書を受理したときは、専攻長にその旨を通知し、地 区委員会に学位論文審査を付託するものとする。

(学位論文の審査委員の選出)

第6条 地区委員会は、提出された学位論文について、学位規程第11条に規定する修士論文に係る審査委員(以下「修士論文審査委員」という。)として、指導教員を含む3人以上の博士前期課程担当教員を選出するものとする。ただし、選出された修士論文審査委員が、やむを得ない事由により論文審査を行うことができなくなったときは、地区委員会の議を経て、新たに修士論文審査委員を選出することができる。

(審査委員主査の指名)

第7条 地区委員会の委員長は、地区委員会の議を経て、修士論文審査委員のうちから主査を指名する。なお、指名された主査が、やむを得ない事由により論文審査を行うことが出来なくなった時は、改めて主査を指名する。

(学位論文公聴会)

第8条 専攻長は,提出された学位論文について公聴会を開催するものとする。

(学位論文の審査及び最終試験)

- 第9条 修士論文審査委員は、学位論文の審査及び最終試験を行う。
- 2 最終試験は、学位論文の審査が終了した後に学位論文を中心として、これに関連のある科目 について、口頭又は筆答により行う。
- 3 修士論文審査委員は、学位論文の審査の結果、不合格と判定したときは、最終試験を行わないものとする。
- 4 学位論文の審査及び最終試験の結果は、合格又は不合格の評語をもって表す。

(学位論文の審査及び最終試験の結果の報告)

第10条 学位論文の審査及び最終試験が終了したときは、修士論文審査委員の主査は、学位論 文の審査及び最終試験の結果の要旨を地区委員会に報告しなければならない。

(学位授与の判定)

第11条 地区委員会は、前条の報告に基づき、学位授与の可否について審議し、議決する。

第3章 課程修了による博士の学位

(論文計画の提出)

- 第12条 学位論文についての論文計画(以下「論文計画」という。)の審査を受けようとする者は、主指導教員に論文計画を提出するものとする。
- 2 論文計画の審査を受けることができる者は、後期課程に2年以上在学し、博士後期課程の履修基準に定める条件を満たした者でなければならない。ただし、在学期間に関し、大学院規則第20条ただし書を適用する者にあっては、この限りでない。

(論文計画審査委員の構成)

- 第13条 提出された論文計画の審査は、論文計画審査委員として指導教員グループが当たる。
- 2 前項の場合において、論文計画審査のため必要があるときは、他の大学院又は研究所等の教員等(以下「他教員等」という。)を加えることができる。
- 3 山形大学大学院理工学研究科委員会(以下「研究科委員会」という。)は、論文計画審査委員の中に他教員等を含むときは、その者の資格審査を行うものとする。

(論文計画の審査)

- 第14条 論文計画の審査は、申請する学位論文の構成及び内容について行う。
- 2 論文計画の審査は、次に掲げる期日までに、実施しなければならない。
 - (1) 後期提出の場合 10 月末日
 - (2) 前期提出の場合 4月末日
- 3 論文計画の審査結果は、合格又は不合格の評語をもって表す。

(論文計画審査結果の報告)

第15条 論文計画の審査が終了したときは、主指導教員は、論文計画審査結果報告書を研究科 委員会に提出しなければならない。

(学位論文の提出)

第16条 学位論文を提出できる者は、論文計画審査に合格した後、所定の提出日において、大学院規則第20条に定める修了要件を、当該提出日に対応する修了日までに、具備できる見込みのある者でなければならない。

(学位論文の題目)

- **第17条** 学位論文を提出しようとするときは、あらかじめその論文の題目及び研究内容について指導教員グループの承認を受けなければならない。
- 2 学位論文の題目は、論文計画審査に合格した後、所定の様式により次に掲げる期日までに、研究科長に届け出なければならない。
 - (1) 後期提出の場合 10 月末日
 - (2) 前期提出の場合 4月末日

- 3 学位論文の題目を変更しようとする場合の手続は、第1項に準ずるものとする。 (学位論文の審査申請)
- 第18条 申請者は、指導教員グループの承認を得た上、申請書に次に掲げる論文等を添付して 山形大学大学院理工学研究科教務委員会(以下「教務委員会」という。)を経て研究科長に提出 しなければならない。

(1) 学位論文(和文又は英文)

全文の電子データ

このほかに審査に必要な部数

 (2) 論文目録 (所定の様式)
 5部

 (3) 論文内容の要旨 (所定の様式)
 5部

 (4) 履歴書 (所定の様式)
 1部

 (5) 共著者の同意書 (所定の様式)
 4部

- (6) 論文目録に記載した論文の別刷又は投稿中の論文原稿の写し及びその掲載決定通知の写し (掲載決定していない場合は、投稿原稿の受付を証明するもの) 各1部
- 2 申請書等の提出期限は、次のとおりとする。
 - (1) 後期提出の場合 12月20日
 - (2) 前期提出の場合 7月1日
- 3 前項に定める日が休日に当たるときは、その前日を提出期限とする。

(学位論文の審査申請の通知)

第19条 研究科長は、前条の申請書を受理したときは、主指導教員にその旨を通知し、研究科 委員会に学位論文審査を付託するものとする。

(学位論文の審査委員の選出)

- 第20条 研究科委員会は、提出された学位論文について、学位規程第21条に規定する課程博士 論文に係る審査委員(以下「課程博士論文審査委員」という。)として、博士後期課程担当教員 3人以上を選出するものとする。ただし、選出された課程博士論文審査委員が、やむを得ない 事由により論文審査を行うことができなくなったときは、研究科委員会の議を経て、新たに課 程博士論文審査委員を選出することができる。
- 2 前項の場合において、論文審査のため必要があるときは、他教員等を加えることができる。
- 3 研究科委員会は、課程博士論文審査委員の中に他教員等を加えるときは、その者の資格審査 を行うものとする。

(審査委員主査の指名)

第21条 研究科長は、研究科委員会の議を経て、課程博士論文審査委員のうちから主査を指名する。なお、指名された主査が、やむを得ない事由により論文審査を行うことが出来なくなったときは、改めて主査を指名する。

(学位論文公聴会)

- 第22条 課程博士論文審査委員の主査は、専攻長の承認の基に、提出された学位論文について 学位論文公聴会を開催し、その司会者となる。
- 2 申請者は、学位論文公聴会で論文の発表を行わなければならない。
- 3 主査は、学位論文公聴会の開催日等を申請者に通知するとともに、原則として開催日の1週 間前までに、全専攻及び関係者に掲示又は書面をもって開催を公示するものとする。
- 4 学位論文公聴会の結果は、学位論文の審査に反映させるものとする。

(学位論文の審査及び最終試験)

- 第23条 課程博士論文審査委員は、学院論文の審査及び最終試験を行う。
- 2 最終試験は、学位論文を中心とし、これに関連のある科目について口頭又は筆答により行う。

- 3 課程博士論文審査委員は、学位論文の審査の結果、不合格と判定したときは、最終試験を行 わないものとする。
- 4 学位論文の審査及び最終試験の結果は、合格又は不合格の評語をもって表す。 (学位論文の審査及び最終試験の結果の報告)
- 第24条 学位論文の審査及び最終試験が終了したときは、課程博士論文審査委員の主査は、学 位論文の審査及び最終試験の結果の要旨(所定の様式)を研究科委員会に報告しなければなら ない。

(審查期間)

第25条 課程修了による博士の学位論文の審査は、当該学生の在学する期間内に終了するものとする。

(学位授与の判定)

- 第26条 研究科委員会は,第24条の報告に基づき,学位授与の可否について審議し,投票によって議決する。
- 2 前項の議決をするときは、研究科委員会構成員(公務及び止むを得ない事情により出席できないものを除く。以下「構成員」という。)の3分の2以上の出席を必要とする。
- 3 学位授与の議決には、出席した構成員の3分の2以上の賛成がなければならない。

第4章 論文提出による博士の学位

(学位論文の審査申請)

第27条 申請者は、本学の博士後期課程担当教員の紹介により、申請書に次に掲げる論文等を 添えて、研究科長を経て学長に提出しなければならない。

(1) 学位論文(和文又は英文)

全文の電子データ

このほかに審査に必要な部数

(2) 論文目録(所定の様式)5部(3) 論文内容の要旨(所定の様式)5部(4) 履歴書(所定の様式)1部(5) 共著者の同意書(所定の様式)5部(6) 学位論文審査手数料57,000円

2 申請は、随時行うことができるものとする。

(論文の内容)

- 第28条 学位論文の内容は、印刷公表されたもの又は印刷公表予定の確実なものでなければならない。
- 2 提出した学位論文は、本学の博士課程修了予定者が提出する学位論文と同等以上のものであることが必要である。

(論文審査委員の選出)

- 第29条 研究科委員会は、提出された学位論文について、学位規程第31条に規定する論文博士 学位論文に係る審査委員(以下「論文審査委員」という。)として、博士後期課程担当教員3人以 上を選出するものとする。ただし、選出された論文審査委員が、やむを得ない事由により論文 審査を行うことができなくなったときは、研究科委員会の議を経て、新たに論文審査委員を選 出することができる。
- 2 前項の場合において、学位論文の審査のため必要があるときは、他教員等を加えることができる。
- 3 研究科委員会は、論文審査委員の中に他教員等を加えるときは、その者の資格審査を行うものとする。

(審査委員主査の指名)

第30条 研究科長は、研究科委員会の議を経て、論文審査委員のうちから主査を指名する。 なお、指名された主査がやむを得ない事由により論文審査を行うことが出来なくなったときは、 改めて主査を指名する。

(学位論文公聴会)

第31条 論文審査委員の主査は、提出された学位論文について学位論文公聴会を開催し、その 司会者となる。

(学位論文の審査及び学力の確認)

- 第32条 論文審査委員は、学位論文の審査及び学力の確認を行う。
- 2 学力の確認は、博士論文に関連のある専攻分野の科目及び外国語科目について、ロ頭又は筆 答で行うものとする。
- 3 前項の規定にかかわらず、学力の確認は、論文審査委員が特別の事由があると認めるときは、 研究科委員会の承認を得て、博士論文に関連のある専攻分野の科目のみについて行うことがで きる。
- 4 論文審査委員は、学位論文の審査の結果、不合格と判定したときは、学力の確認を行わないものとする。
- 5 学位論文の審査及び学力の確認の結果は、合格又は不合格の評語をもって表す。 (学力の確認の特例)
- 第33条 第27条の規定により学位の授与を申請した者が、本学大学院博士後期課程に3年以上 在学し所定の単位を修得した者である場合には、学位規程第33条の規定により、前条の学力の 確認を免除することができる。

(学位審査の特例)

- 第34条 本学の博士後期課程に3年以上在学し,所定の単位を修得し,退学した者(以下「単位修得退学者」という。)が退学時より3年以内に学位論文を提出した場合には,課程博士の学位論文審査と同様の審査を行う。
- 2 単位修得退学者が退学時より1年以内に学位論文を提出するときは、論文審査手数料を納付することを要しない。

(学位論文の審査及び学力の確認の結果報告)

- 第35条 学位論文の審査及び学力の確認が終了したときは、論文審査委員の主査は、学位論文 の審査及び学力確認の結果の要旨(所定の様式)を研究科委員会に報告しなければならない。 (審査期間)
- 第36条 論文提出による博士の学位論文の審査は、申請書を受理した日から1年以内に終了するものとする。

(学位授与の判定)

- 第37条 研究科委員会は、第35条の報告に基づき、学位授与の可否について審議し、投票によって議決する。
- 2 前項の議決をするときは、構成員(公務及び止むを得ない事情により出席できないものを除 く。)の3分の2以上の出席を必要とする。
- 3 学位授与の議決には、出席した構成員の3分の2以上の賛成がなければならない。 (その他の事項)
- 第38条 その他必要な事項は、研究科委員会の議を経て、研究科長が定める。

附 則

この細則は、平成28年8月30日から施行する。

6. 山形大学外国人留学生規程

(昭和63年2月16日全部改正)

山形大学外国人学生規則(昭和 30 年 12 月 23 日制定)の全部を改正する。 (趣旨)

- 第1条 この規程は、山形大学学部規則(以下「学部規則」という。)第43条 第2項及び山形大学大学院規則(以下「大学院規則」という。)第28条第2 項の規定に基づき、外国人留学生について必要な事項を定めるものとする。 (定義)
- 第2条 この規程において,「外国人留学生」とは,出入国管理及び難民認定法(昭和26年政令第319号)別表第1に定める「留学」の在留資格により,本学において教育を受ける外国人学生をいう。

(区分及び入学資格)

第3条 外国人留学生の区分及び入学資格は、次のとおりとする。

区分	入学資格
学部学生	学部規則第 10 条に規定するもの
大学院学生	大学院規則第6条に規定するもの
(修士課程及び博士前期課	
程)	
大学院学生	大学院規則第7条に規定するもの
(博士後期課程)	
大学院学生	大学院規則第8条に規定するもの
(医学系研究科博士課程)	
学部科目等履修生	(1) 学部規則第 10 条に規定するもの
	(2) 日本語・日本文化研修コースを受講する者
学部研究生	山形大学研究生規程第4条に規定するもの
学部特別聴講学生	(1) 協定に基づく外国の大学又は短期大学の学
	生
	(2) 日本語・日本文化研修コースを受講する者
大学院科目等履修生	大学院規則第6条,第7条又は第8条に規定する
	もの
大学院研究生	山形大学研究生規程第9条に規定するもの
大学院特別聴講学生	協定に基づく外国の大学院の学生
特別研究学生	協定に基づく外国の大学院の学生
日本語研修生	日本語研修コースの学生

(入学の時期)

第4条 入学の時期は、原則として学期の始めとする。

(志願方法等)

- 第 5 条 入学を志願する者は、次に掲げる書類に検定料を添えて、志願する学 部又は研究科の長を経て、学長に願い出なければならない。
 - (1) 入学願書
 - (2) 履歴書
 - (3) 最終出身学校の卒業(修了)証明書及び成績証明書
 - (4) 健康診断書
 - (5) 現に日本に在留している者は、市区町村長が発行する住民票の写し
 - (6) その他必要と認める書類
- 2 国費外国人留学生制度実施要項(昭和29年3月31日文部大臣裁定)に基づく 国費外国人留学生及び外国政府派遣留学生については、文部科学省からの協 議書類をもって前項各号に掲げる書類に代えることができる。

(入学者の選考)

第6条 入学者の選考は、当該学部又は研究科において行う。

(合格者の決定)

第7条 合格者の決定は、前条に規定する選考に基づき、当該学部教授会又は 研究科委員会の意見を聴いた上で、学長が行う。

(入学の手続)

第8条 前条の合格者は、所定の期日までに所定の書類を提出するとともに、 入学料を納付しなければならない。

(入学の許可)

- 第9条 学長は、前条の入学手続を完了した者について、入学を許可する。
- 2 外国人留学生は、定員の枠外として取り扱うことができる。

(教育課程)

第10条 授業科目,単位数及び履修方法は,各学部,研究科等の定めるところによる。

(卒業,修了等)

- 第11条 学部学生については、所定の期間以上在学し、所定の単位を修得した者に、当該学部教授会の意見を聴いた上で、学長が卒業を認定し、学位を授与する。
- 2 大学院学生については、所定の期間以上在学し、所定の単位以上を修得し、 かつ、必要な研究指導を受けた上、学位論文の審査及び最終試験に合格した 者に、当該研究科委員会の議を経て、学長が学位を授与する。
- 3 学位については、山形大学学位規程の定めるところによる。 (検定料、入学料、授業料及び寄宿料)
- 第12条 学部学生,大学院学生,科目等履修生,研究生,特別聴講学生及び特別研究学生の検定料,入学料,授業料及び寄宿料の額は,国立大学法人山形大学における授業料その他の費用に関する規程の定めるところによる。

2 前項の規定にかかわらず, 国費外国人留学生制度実施要項(昭和 29 年 3 月 31 日文部大臣裁定)に基づく国費外国人留学生に係る検定料, 入学料及び授業料は, 徴収しない。

(交流協定に基づく外国人留学生の授業料等)

- 第13条 本学と諸外国の大学との間において締結された大学間交流協定,学部間交流協定及びこれらに準ずるものに基づき受け入れる外国人留学生については,協定留学生として受け入れる。
- 2 前項に規定する協定留学生については、検定料、入学料及び授業料を徴収しないことができる。

(その他)

第14条 外国人留学生については、この規程に定めるもののほか、本学の諸規 則中、学生に関する規定を準用する。

附則

この規則は、昭和63年4月1日から施行する。

(省略)

附 則(平成28年3月9日)

この規程は、平成28年4月1日から施行する。

7. 山形大学大学院特別研究学生交流規程

(昭和57年12月10日制定)

第1章 総則

(趣旨)

第1条 この規程は、山形大学大学院規則(以下「大学院規則」という。)第16条の規定により他の大学院又は研究所等(以下「他大学院等」という。)において研究指導を受ける者(以下「特別研究派遣学生」という。)及び同規則第27条の規定により本大学院において研究指導を受ける者(以下「特別研究学生」という。)の取扱いについて必要な事項を定めるものとする。

(他大学院等との協議)

第2条 大学院規則第16条及び第27条の規定に基づく他大学院等との協議は、研究題目、研究指導期間その他必要な事項について、当該研究科委員会(以下「委員会」という。)の議 を経て、研究科長が行う。

第2章 特別研究派遣学生

(出願手続)

第3条 特別研究派遣学生として他大学院等の研究指導を受けようとする者は,所定の願書により研究科長に願い出なければならない。

(研究指導の許可)

第4条 前条の願い出があったときは,第2条の規定による協議に基づき,研究科長が研究指導を受けることを許可する。

(研究指導の報告)

第4条の2 前条の規定により研究指導を許可した場合,研究題目,研究指導期間その他必要な事項について,研究科長は学長に報告するものとする。

(研究指導期間)

- 第5条 特別研究派遣学生が研究指導を受ける期間は、1年以内とする。ただし、大学院博士 課程において、やむを得ない事情があると認められる場合は、委員会の議を経て、研究科 長が期間の延長を許可することがある。
- 2 前項ただし書の場合において、許可する期間は1年を超えることができない。 (研究報告)
- 第6条 特別研究派遣学生は、研究指導が終了したときは、直ちに(外国の他大学院等において研究指導を受けた者にあっては、帰国の日から1月以内)研究科長に研究報告書及び当該他大学院等の長の交付する研究指導の報告書を提出しなければならない。

(研究指導許可の取消し)

- 第7条 特別研究派遣学生が次の各号の一に該当するときは, 研究科長が研究指導の許可を取り消すことがある。
- (1) 山形大学(以下「本学」という。)又は他大学院等の諸規則に違反したとき。
- (2) 派遣の趣旨に反する行為が認められるとき。

第3章 特別研究学生

(受入れの許可)

- 第8条 他の大学院から特別研究学生の受入れについて依頼があったときは,第2条の規定による協議に基づき,研究科長が受入れを許可する。
- 2 前項の依頼に当たっては、研究科で定める書類を提出しなければならない。
- 3 第1項の規定による特別研究学生の受入れを許可した場合,研究科長は学長に報告するものとする。

(研究指導の報告書)

第9条 特別研究学生に対する研究指導が終了したときは, 研究科長が研究指導の報告書を交付するものとする。

(規定の準用)

- 第10条 第5条及び第7条の規定は、特別研究学生に準用する。
- 2 特別研究学生には、本学の諸規則中、学生に関する規定を準用する。

(省略)

附 則

この規程は、平成27年4月1日から施行する。

山形大学大学院における博士課程教育リーディングプログラム「フロンティア有機材料システム創成フレックス大学院」奨励金規程

平成25年4月1日 制 定

(趣旨)

第1条 この規程は、山形大学大学院における博士課程教育リーディングプログラム「フロンティア有機材料システム創成フレックス大学院」運用規程第9条の規定に基づき、 学生に支給する奨励金に関し必要な事項を定めるものとする。

(奨励金の支給)

- 第2条 奨励金は、学修及び研究に専念するための支援経費として、本学大学院における 博士課程教育リーディングプログラム「フロンティア有機材料システム創成フレックス 大学院」(以下「本プログラム」という。)に所属する学生に対し、本学大学院規則第 2条第2項に規定する博士課程の標準修業年限内に限り支給することができる。 (支給条件)
- 第3条 奨励金を支給する学生に対しては、次の各号に掲げる条件を付すものとする。
 - (1) 受給開始日から1年以上継続して当該リーディングプログラムに所属すること。
 - (2) 他の給付・貸与型の経費(授業料援助を目的とする助成金であって、本学が認めたものを除く。)を受給しないこと。
 - (3) 原則として、就労を行わないこと。
- 2 前項第3号の規程にかかわらず、当該活動が本プログラムの実施に不可欠な場合、次に 掲げる就労を認めることができる。
 - (1) 週当たり総時間数5時間までのTA (ティーチングアシスタント)
 - (2) 週当たり総時間数5時間までのRA(リサーチアシスタント)
 - (3) インターンシップにおける就労

(受給申請)

第4条 奨励金を受給しようとする学生は、所定の書類を、別に定める期日までに、フレックス大学院プログラムコーディネーター(以下「プログラムコーディネーター」という。)に提出しなければならない。

(選考手続)

- 第5条 プログラムコーディネーターは、前条の申請を受け、奨励金を支給する学生を決 定する。
- 2 プログラムコーディネーターは、奨励金の支給開始日までに、奨励金の受給が決定した学生(以下「受給学生」という。)の氏名を公表するものとする。

(支給額)

第6条 奨励金の支給額は、フレックス大学院プログラム開発・運営委員会(以下「運営委員会」という。)において別に定める。ただし、受給学生1人につき月額20万円を超えることはできない。

(支給方法)

第7条 奨励金は、原則として支給定日(毎月の17日(その日が日曜日にあたるときは15日、その日が土曜日にあたるときは16日、その日が祝日にあたるときは18日)とする。)に、受給学生が指定する口座に振り込むことにより支給するものとする。

- 2 前項の規定にかかわらず、支給定日までに支給条件に係る事実が確認できない等のため、その日に支給することができないときは、その日後の支給定日に支給する。 (支給停止)
- 第8条 プログラムコーディネーターは、受給学生が、次の各号のいずれかに該当する場合は、事実が生じた月の翌月以降の奨励金の支給を停止又は取り消すことができる。
 - (1) 第3条に規定する条件を満たさないこととなった場合
 - (2) 休学若しくは退学又は除籍となった場合
 - (3) 死亡した場合
 - (4) 懲戒処分を受けた場合
 - (5) 学業成績又は性行が不良である場合
 - (6) フレックス大学院が実施する審査等によりリーディングプログラムにおいて学位を 授与する対象者とならないこととなった場合
 - (7) 自己都合によりリーディングプログラムに所属しないこととなった場合 (奨励金の返還)
- 第9条 プログラムコーディネーターは、前条の規定に基づき奨励金の支給を取り消された受給学生に、取消しに係る奨励金の返還を請求することができる。
- 2 受給学生は、前項の規定に基づき返還請求を受けたときは、速やかに取消しに係る奨励金を返還しなければならない。

(競争的資金の受給)

- 第10条 第3条第2号の規定にかかわらず、受給学生が、他の競争的資金を受けて研究活動等を実施することが不可欠である場合は、当該競争的資金に応募することができる。
- 2 受給学生は、前項の規定に基づき他の競争的資金に応募する場合は、所定の様式により、プログラムコーディネーターの許可を得なければならない。

(特別な事情による支給停止)

第11条 プログラムコーディネーターは、運営委員会の議を経て、予算等の状況により奨励金の減額又は支給の停止を行うことができる。

(その他)

第12条 プログラムコーディネーターは、運営委員会の議を経て、受給学生が長期に留学 又はインターンシップ等に参加する場合は、必要とする経費(滞在費を含む。)を、予 算の範囲内で奨励金とは別に支給することができる。

(雑則)

第13条 この規程に定めるもののほか、奨励金の支給に関し必要な事項は、別に定める。

附則

この規程は、平成25年4月1日から施行する。

附則

この規程は、平成25年12月10日から施行し、平成25年10月1日から適用する。 附 則

この規程は、平成28年5月24日から施行し、平成28年4月1日から適用する。 附 則

この規程は、平成28年8月30日から施行する。

附則

この規程は、平成28年12月27日から施行する。

平成 年 月 日

山形大学大学院における博士課程教育リーディングプログラム 「フロンティア有機材料システム創成フレックス大学院」奨励金申請書

フレックス大学院プログラムコーディネーター 殿

申請者			
専马	2 名	:	
学生	番号	:	
フリ	ガナ		
氏名((性別)	:	 (男・女)
大い来来で	旦		
指導教	貝		
所	属	:	
職	名	:	
氏	名	: .	<u> </u>

なお、山形大学大学院における博士課程教育リーディングプログラム「フロンティア 有機材料システム創成フレックス大学院」奨励金規程第3条各号に定める奨励金支給条件を全て満たしており、申請にあたっては、虚偽の記載はありません。

また,奨励金の受給期間中は,博士課程教育リーディングプログラムの学修および研究に専念します。

記

区).	分	新規 •	継続			
申記	情者の)	Ŧ				
現住所			TEL E-mail			@	
受 給)期	間	平成	年4月1日	~	平成	年3月31日(12カ月)

研究題目名	
	1 研究概要(500 字程度)
受給期間中の 研究計画書	2 見込まれる業績(500 字程度)
	3 成果など(500 字程度)

※受給期間は年度を超えることはできません。

平成 年 月 日

競争的資金応募伺

フレックス大学院プログラムコーディネーター 殿

応募者		
専 攻 名	:	
学生番号	:	
フリガナ		
氏名(性別)	:	(印 (男・女)
指導教員		
所 属	:	
職名	:	
氏 名	:	

下記の理由により、競争的資金に応募してもよろしいか伺います。

記

	1	応募する競争的資金の内容
プログラムと 競争的資金の 関係	2	応募理由
	3	プログラムにおける研究活動等に与える効果

※必要に応じて競争的資金に応募する資料を添付してください。

山形大学大学院における博士課程教育リーディングプログラム「フロンティア有機 材料システム創成フレックス大学院」院生寮(YUグラジュエートハウス)規程

> 平成25年4月1日 制 定

(趣旨)

第1条 この規程は、山形大学大学院における博士課程教育リーディングプログラム「フロンティア有機材料システム創成フレックス大学院」運用規程第10条の規定に基づき、院生寮YUグラジュエートハウス(以下「院生寮」という。)の管理運営について必要な事項を定めるものとする。

(設置目的)

第2条 院生寮は、「フロンティア有機材料システム創成フレックス大学院」(以下「フレックス大学院」という。)に入学した学生に対し勉学にふさわしい環境を提供するととともに、フレックス大学院学生としての共同生活を通じてグローバル人材の形成に寄与することを目的とする。

(院生寮の管理運営の責任者等)

- 第3条 院生寮の名称、管理運営責任者及び収容定員は、次のとおりとする。
- (1) 院生寮の名称は、YUグラジュエートハウスとする。
- (2) 管理運営責任者をフレックス大学院プログラムコーディネーターとする。
- (3) 収容人数は,60人とする。

(管理運営)

第4条 院生寮の管理運営に関する事項は、フレックス大学院プログラム開発・運営委員会(以下「運営委員会」という。)で審議する。

(顧問)

- 第5条 院生寮に、寮長を置く。
- 2 寮長は、管理運営責任者が指名し、委嘱するものとする。
- 3 寮長は,院生寮生活に対して,随時適切な助言指導を行う。 (入寮願)
- 第6条 院生寮に入寮を希望する者は、所定の入寮願書に大学が指定する書類を添えて、管理運営責任者に願い出るものとする。

(入寮選考及び入寮許可)

- 第7条 入寮を許可すべき者の選考及び入寮の許可は、管理運営責任者が行う。 (入寮許可の取消し)
- 第8条 入寮を許可された者で、入寮選考の過程において虚偽の申立てをしたこと が判明したときは、入寮の許可を取り消すことがある。

(寄宿料)

- 第9条 寄宿料については、別に定める。
- 2 月の途中で入寮又は退寮した場合における当該月の寄宿料は、日割りにより計算した額とする。この場合について、1ヶ月は30日とする。

(経費負担)

第10条 食費その他寮生の生活に必要な光熱水料,共益費等の経費は,寮生の負担とする。

(施設の利用等)

第11条 寮生は、居室、共同施設その他院生寮施設を正常な状態に保全すること に意を用い、院生寮の利用にあたっては、別に定めるところに従わなければな らない。

(退寮手続)

- 第12条 退寮を希望する者は、30日以上前に所定の退寮願を管理運営責任者に提出し、その承認を受けるものとする。ただし、退寮日の決定は、管理運営責任者の指示に従うものとする。夏季及び冬季の休業中のみの退寮は、認めない。
- 2 本学フレックス大学院学生としての身分を失った者は、直ちに退寮しなけれ ばならない。

(退寮処分)

- 第13条 寮生が次の各号のいずれかに該当するときは、管理運営責任者は、退寮 を命ずることがある。
- (1) 山形大学大学院規則又はこの規程に違反したとき。
- (2) 保健衛生上他の寮生に悪影響のあるとき。
- (3) 風紀、秩序を乱す行為のあったとき。
- (4) 寄宿料及び納付すべき所定の経費を滞納したとき。

(寮生以外の者の宿泊)

第14条 院生寮には,寮生以外の者を宿泊させてはならない。

(その他)

第15条 この規程に定めるもののほか,院生寮の利用に関する必要な事項は,運 営委員会の議を経て,管理運営責任者が別に定める。

附則

この規程は、平成25年4月1日から施行する。

附 則(平成26年12月16日)

- この規程は、平成26年12月16日から施行し、平成26年12月1日から適用する。 附 則(平成28年8月30日)
- この規程は、平成28年8月30日から施行する。

山形大学大学院における博士課程教育リーディングプログラム「フロンティア有機材料システム創成フレックス大学院」院生寮 (YU グラジュエートハウス)入寮願

平成 年 月 日

所 属	フレ	ックス大学隊	完 (専攻)
ふりがな							
氏 名							
性 別	男•	女					
現住所	₸	_					
電話番号		-	_		_		
	住所	〒 -					
保証人	氏名						
NA HIEL Y	電話			_		_	
	続柄						
入寮希望年	<u> </u>	平成	年	月	日		

※「個人情報の利用」について

提出していただいた書類の個人情報は、寮務事務のみ使用し、 第三者に開示・提供・預託することはありません。 山形大学大学院における博士課程教育リーディングプログラム「フロンティア有機材料システム創成フレックス大学院」の博士後期課程への進学審査に係るQE (Qualifying Examination:博士課程研究基礎力試験)に関する内規

(平成26年1月21日)

(趣旨)

- 第1条 この内規は、山形大学大学院規則第9条の2第2項の規定に基づき、山形大学大学院における博士課程教育リーディングプログラムフロンティア有機材料システム創成フレックス大学院(以下「フレックス大学院」という。) コースに在籍している学生の博士後期課程への進学審査に係る QE(Qualifying Examination:博士課程研究基礎力試験)(以下「QE」という。) について、必要な事項を定めるものとする。(審査条件)
- 第2条 QE を受験することができる者は、本コースに在籍し、学生が所属する研究科の学生便覧に定める所定の本コース1、2年次履修基準の授業科目(以下「授業科目」という。)を修得する見込みがあり、かつ、次項の要件を満たし、必要な研究指導を受けた学生とする。
- 2 QE を受験する要件は、次の各号のいずれにも該当することとする。
 - (1) 英語による国際学会発表1件又は英文予稿1件を投稿済みであること。
 - (2) 論文 1 件(英語を推奨し、査読付プロシーディングも認める)を投稿済みである こと。

(審査申請)

- 第3条 QE の受験を申請しようとする者(以下「申請者」という。)は、フレックス大学院教育ディレクター(以下「教育ディレクター」という。)及び主指導教員の承認を得た上で、次に掲げる書類を申請者が所属する研究科の研究科長(以下「研究科長」という。)に提出しなければならない。
 - (1) 博士後期課程への進学審査に係る QE(Qualifying Examination:博士課程研究基礎力試験)申請書(別紙様式第1号)
 - (2) 論文目録(別紙様式第2号)
 - (3) 研究内容要旨(別紙様式第3号)
- 2 申請の提出期限は、11月30日とする。
- 3 前項に定める日が日曜日又は土曜日に当たるときは、その直前の金曜日を提出期限とする。

(通知及び付託)

第4条 研究科長は、前条の申請書を受理したときは、教育ディレクターにその旨を通知 し、QE の実施を申請者が所属する研究科に係る大学院理工学研究科博士前期課程米沢 地区委員会又は大学院有機材料システム研究科委員会(以下「当該委員会」という。) に付託するものとする。

(審査委員の選出)

第5条 当該委員会は、提出された申請について、QE を実施するため、主専攻及び副専攻の指導教員を含む3人以上のQE 審査委員(以下「審査委員」という。)を選出する。ただし、選出されたQE審査委員が、やむを得ない事由によりQE審査を行うことが出来なくなったときは、当該委員会の議を経て、新たにQE審査委員を選出することができる。

(審查委員主查)

- 第6条 研究科長は、当該委員会の議を経て、審査委員のうちから主査を指名する。 (審査委員会)
- 第7条 教育ディレクターは、QE 審査委員会(以下「審査委員会」という。)を招集し、 その座長となる。
- 2 審査委員会は、教育ディレクター及び審査委員で構成する。
- 3 審査委員会が必要と認めるときは、フレックス大学院を担当する教員の出席を得て意 見を求めることができる。
- 4 審査委員会は、QE に係る日程の決定及び次条に定める QE の実施方法について確認する。

(実施方法)

- 第8条 QE は、山形大学大学院規則第19条第2項及び第3項の規定に準じて、研究の成果に関して発表及び質疑により審査し、研究遂行能力並びに価値創成グローバル実践力を口頭試問により審査する。
- 2 審査委員会が必要と認めるときは、QE に際し、フレックス大学院を担当する教員の出席を得て、口頭試問時の質疑応答に加わり、判定時に意見を求めることができる。
- 3 審査の結果は、合格又は不合格の評語をもって表す。 (結果報告)
- 第9条 審査委員会は、QE が終了したときは、QE の結果を、当該委員会に報告しなければならない。
- 2 教育ディレクターは、授業科目修得状況について、当該委員会に報告するものとする。 (博士後期課程への進学の判定)
- 第 10 条 当該委員会は、前条の報告に基づき、博士後期課程への進学の可否について審議し、決定する。

附則

この内規は、平成26年1月21日から施行する。 附 則

この内規は、平成27年9月8日から施行する。 附 則

この内規は、平成28年5月24日から施行する。 附 則

この内規は、平成28年8月30日から施行する。 附 則

この内規は、平成28年11月22日から施行する。

平成	年	月	Ħ
7717		/ 1	

研究科長 殿

平成 年度入学 博士前期課程 主専攻名 副専攻名 学生番号 氏 名 個

博士後期課程への進学審査に係る QE(Qualifying Examination:博士課程研究基礎力試験) 申請書

山形大学大学院規則第9条の2第2項の規定により、 QE を受験したいので、下記の書類を添えて申請します。

記

論 文 目 録 研 究 内 容 要 旨

主指導教員

フレックス大学院教育ディレクター 印

論 文 目 録

(bibliography)

入学年度(admission year):

主専攻名(major):

副専攻名(minor):

学生番号(student number):

氏 名(name):

[国際学会発表] (presentations at international conferences)

(1) <u>Taro Yamagata</u>, Jiro Yonezawa, △△△△△△△△△△△△△△△△△△△△
 (5) ** ** ** ** ** ** ** ** (会議名 conference name) 7/2007, Yonezawa, Japan, PP.456-457
 (2)

(注) ① 全著者名(本人氏名に下線を引く), タイトル, 会議名, 開催年月, 開催地, ページ(始頁-終頁)を記入してください。

Write all authors (underline your name), title, conference name, month and year held, place held, and pages (start-end pages).

② 新しいものから古いものへ遡って年代順に記入してください。
Begin with the most recent one (i.e. reverse chronological order).

[論 文] (articles)

- (1) <u>Taro Yamagata</u>, Jiro Yonezawa, △△△△△△△△△△△△△△△(論文名 title), ××××××(誌名 journal), Vol.56, No.3, PP.234-238, (2007)
- (2) <u>山形太郎</u>, 米沢二郎, 東北三郎, △△△△△△△△△△△△△△(論文名 title) ××××× (誌名 journal), 第 30 巻, 第 2 号, PP.345-349, (2006)
 - (注)① 全著者名(本人氏名に下線を引く),論文名,発表機関(学術雑誌名,巻,号,ページ(始頁-終頁)),発表年を記入してください。

Write all authors (underline your name), article title, publisher (journal name, volume, issue, page (start-end pages), and publication year.

- ② 新しいものから古いものへ遡って年代順に記入してください。
 Begin with the most recent one (i.e. reverse chronological order).
- ③ 印刷中の場合は(印刷中),投稿中の場合は(投稿中),準備中の場合は(投稿準備中) と記入してください。

Specify each publication by adding (in print) or (submitted).

記載例,及び(注)の部分は削除して使用してください。 Delete examples and instructions when you use this form.

研究内容要旨

(research summary)

入学年度(admission year):

学生番号(student number):

主専攻名(major): 副専攻名(minor):

氏 名(name):

研究題目(research	title):	0	0	\circ	0	0	0	0	\circ	0	0	0	0
000000000000000000000000000000000000000		000	00	00	00	000	000)00	000	000	000)OC	0000

(注) タイプ, ワープロ等を用いてください。10pt 1,000字程度(1頁以内)とします。 (Type using a font size 10pt, maximum 300 words in one page.) 山形大学大学院における博士課程教育リーディングプログラム「フロンティア有機材料システム創成フレックス大学院」の5年一貫博士課程コース修了に係るECE (End-of-Course Examination:フレックス大学院修了試験)に関する内規

平成 27 年 9 月 8 日

(趣旨)

第1条 この内規は、山形大学大学院規則第13条の2第2項の規定に基づき、山形大学大学院における博士課程教育リーディングプログラムフロンティア有機材料システム創成フレックス大学院(以下「フレックス大学院」という。)コースに在籍している学生の5年一貫博士課程コース修了の可否を審査するための ECE (End-of-Course Examination:フレックス大学院修了試験)(以下「ECE」という。)について必要な事項を定めるものとする。

(コース修了要件)

第2条 本コースを修了する者は、学生が所属する研究科(以下「当該研究科」という。) の学生便覧に定める所定の本コース履修基準の授業科目(以下「授業科目」という。)を 修得し、かつ、博士学位論文の審査及び最終試験に合格した上で、ECE に合格しなけれ ばならない。

(審査申請)

- 第3条 ECE の受験を申請しようとする者(以下「申請者」という。)は、当該研究科の学 位審査細則に定める博士学位論文の審査申請を行う同一学期に、主指導教員並びにフレックス大学院教育ディレクター(以下「教育ディレクター」という。)の承認を得た上で、次に掲げる書類をフレックス大学院プログラムコーディネーター(以下「プログラムコーディネーター」という。)へ提出しなければならない。
 - (1) フレックス大学院コース修了審査に係る ECE (End-of-Course Examination: フレックス大学院修了試験) 申請書 (所定様式)
 - (2) フレックス大学院活動結果要旨(所定様式) (通知及び付託)
- 第 4 条 プログラムコーディネーターは、前条の申請書を受理したときは、教育ディレクターにその旨を通知し、ECEの実施をフレックス大学院プログラム開発・運営委員会(以下「運営委員会」という。)に付託し、実施責任者を教育ディレクターにあたらせる。(審査委員の選出)
- 第5条 運営委員会は、提出された申請について、各申請者の ECE を実施するため、フレックス大学院産学連携教員3名以上の ECE 審査委員を選出する。
- 2 運営委員会が必要と認めるときは、ECE 審査委員(以下「審査委員」という。)のうち 1名を当該研究科博士後期課程担当教員をもって代えることができる。
- 3 選出された ECE 審査委員が、やむを得ない事由により ECE 審査を行うことが出来なくなったときは、運営委員会の議を経て、新たに ECE 審査委員を選出することができる。

(審査長)

第 6 条 プログラムコーディネーターは、運営委員会の議を経て、審査委員をフレックス 大学院産学連携教員の中から各 ECE 審査長を指名する。

(実施方法)

- 第7条 ECE は、本コースの教育目標に掲げる能力を身につけていることを、口頭試問により審査する。
- 2 審査の結果は、合格又は不合格の評語をもって表す。 (結果の報告)
- 第8条 ECE 審査長は、ECE が終了したときは、ECE の結果を、運営委員会に報告しなければならない。
- 2 教育ディレクターは、本コース修了に係る授業科目修得状況及び博士学位論文の審査結果について、運営委員会に報告するものとする。

(本コース修了の判定)

第 9 条 運営委員会は、前条の報告に基づき、本コース修了の可否について審議し、決定 し、判定結果を当該研究科の研究科委員会に報告するものとする。

附則

この内規は、平成27年9月8日から施行する。

附則

この内規は、平成28年5月24日から施行する。

附則

この内規は、平成28年8月30日から施行する。

附則

この内規は、平成28年11月22日から施行する。

フレックス大学院プログラムコーディネーター 殿

 平成
 年度入学
 博士後期課程

 専攻名
 学生番号

 氏名
 6

フレックス大学院コース修了審査に係る ECE (End-of-Course Examination: フレックス大学院修了試験) 申請書

山形大学大学院規則第13条の2第2項の規定により、ECE を受験したいので、下記書類を添えて申請します。

記

フレックス大学院活動結果要旨

 主指導教員
 印

 フレックス大学院教育ディレクター
 印

フレックス大学院活動結果要旨

(activity summary in Innovative Flex Course for Frontier Organic Material Systems)

Admission year :	
Major:	
Student number :	
Name:	

Type your summary here.

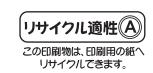
Make sure to follow the format outlined below;

Font: 10-point, Times New Roman

Line spacing: Single

Length: maximum 800 words

Language: English


Printing: Use both sides of paper (Delete instructions when you use this form.)

	Name:
T	

2017年4月1日

発 行 山形大学大学院理工学研究科

〒992-8510 米沢市城南四丁目3-16電話(ダイヤルイン) 0238-26-3015

